The quakes data set contains information about the locations of earthquakes near Fiji.
head(quakes)
## lat long depth mag stations
## 1 -20.42 181.62 562 4.8 41
## 2 -20.62 181.03 650 4.2 15
## 3 -26.00 184.10 42 5.4 43
## 4 -17.97 181.66 626 4.1 19
## 5 -20.42 181.96 649 4.0 11
## 6 -19.68 184.31 195 4.0 12
summary(quakes)
## lat long depth mag
## Min. :-38.59 Min. :165.7 Min. : 40.0 Min. :4.00
## 1st Qu.:-23.47 1st Qu.:179.6 1st Qu.: 99.0 1st Qu.:4.30
## Median :-20.30 Median :181.4 Median :247.0 Median :4.60
## Mean :-20.64 Mean :179.5 Mean :311.4 Mean :4.62
## 3rd Qu.:-17.64 3rd Qu.:183.2 3rd Qu.:543.0 3rd Qu.:4.90
## Max. :-10.72 Max. :188.1 Max. :680.0 Max. :6.40
## stations
## Min. : 10.00
## 1st Qu.: 18.00
## Median : 27.00
## Mean : 33.42
## 3rd Qu.: 42.00
## Max. :132.00
plot(quakes$depth, quakes$mag, xlab="depth (km)", ylab="mag (numeric Richter Magnitude)", main="Earthquakes Near Fiji")
quakes.lm <- lm(mag ~ depth, data=quakes)
quakes.lm
##
## Call:
## lm(formula = mag ~ depth, data = quakes)
##
## Coefficients:
## (Intercept) depth
## 4.754599 -0.000431
\[ \widehat{mag} = 4.754599 - 0.000431 * depth \] For every 1 km increase in depth, the magnitude decreases by 0.000431 on the Richter scale. The intercept means that at 0 km, the magnitude is 4.754599.
plot(mag ~ depth, data=quakes)
abline(quakes.lm)
## Model Quality Evaluation
summary(quakes.lm)
##
## Call:
## lm(formula = mag ~ depth, data = quakes)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.72012 -0.29642 -0.03694 0.19818 1.70014
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.755e+00 2.179e-02 218.168 < 2e-16 ***
## depth -4.310e-04 5.756e-05 -7.488 1.54e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3921 on 998 degrees of freedom
## Multiple R-squared: 0.05319, Adjusted R-squared: 0.05225
## F-statistic: 56.07 on 1 and 998 DF, p-value: 1.535e-13
\[ -0.29642 \neq 1.5 * 0.3921\]
\[ 0.19818 \neq 1.5 * 0.3921 \]
par(mfrow=c(2,2))
plot(quakes.lm)
In the Residuals vs Fitted plot, the residuals do not appear to be evenly distributed. In the Q-Q plot, the right tail is “heavier” than what would be expected for residuals that are normally distributed. The distribution is right-skewed. Overall, a linear model is not appropriate for capturing the relationship between magnitude and depth.