library(tidyverse)
df <- datasets::cars
summary(df)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
plot(cars$speed, cars$dist, xlab="speed (mph)", ylab="stopping distance (ft)", main="Cars")
cars.lm <- lm(dist ~ speed, data=cars)
cars.lm
##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
## Coefficients:
## (Intercept) speed
## -17.579 3.932
\[ \widehat{dist} = - 17.579 + 3.932 * speed \] For every 1 mph increase in speed, the stopping distance increases by 3.9 feet. The intercept means that when the speed is 0 mph, the stopping distance is -17 feet, which does not make sense. The intercept does not make sense here.
plot(dist ~ speed, data=cars)
abline(cars.lm)
summary(cars.lm)
##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.069 -9.525 -2.272 9.215 43.201
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -17.5791 6.7584 -2.601 0.0123 *
## speed 3.9324 0.4155 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
\[ -9.525 \neq 1.5 * 15.38 \]
\[ 9.215 \neq 1.5 * 15.38 \]
par(mfrow=c(2,2))
plot(cars.lm)
In the Q-Q plot, the right tail is “heavier” than what would be expected for residuals that are normally distributed. The distribution is right-skewed.