Healthy Cities GIS Assignment

Author

Allan Maino vieytes

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(leaflet)
setwd("E:/data-110")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Data_Value_Type == "Crude prevalence") 

head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
4  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
5  2017 CA        California Inglewood Census Tract    BRFSS      Health Outcom…
6  2016 CA        California Inglewood City            BRFSS      Prevention    
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

prevention <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)
# A tibble: 6 × 18
   Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
1  2017 CA        California Hawthorne Census Tract    Health … 0632548… "Arthr…
2  2017 CA        California Hawthorne City            Unhealt… 632548   "Curre…
3  2017 CA        California Hayward   City            Unhealt… 633000   "Obesi…
4  2017 CA        California Indio     Census Tract    Health … 0636448… "Arthr…
5  2017 CA        California Inglewood Census Tract    Health … 0636546… "Diagn…
6  2016 CA        California Inglewood City            Prevent… 636546   "Mammo…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with the cleaned “Prevention” dataset

1. Once you run the above code, filter this dataset one more time for any particular subset.

Filter chunk here

DMV <- prevention |>
  filter(StateAbbr %in% c( "MD", "VA", "DC" ) ) |>
  filter(MeasureId == "ACCESS2" )
DMV_OBESITY <- prevention |>
  filter(StateAbbr %in% c( "MD", "VA", "DC" ) ) |>
  filter(MeasureId == "OBESITY" ) 
DMV_BINGE <- prevention |>
  filter(StateAbbr %in% c( "MD", "VA", "DC" ) ) |>
  filter(MeasureId == "BINGE" ) 
head(DMV)
# A tibble: 6 × 18
   Year StateAbbr StateDesc   CityName GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>       <chr>    <chr>           <chr>    <chr>    <chr>  
1  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… "Curre…
2  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… "Curre…
3  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… "Curre…
4  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… "Curre…
5  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… "Curre…
6  2017 DC        District o… Washing… Census Tract    Prevent… 1150000… "Curre…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

ggplot( DMV, aes(x = StateAbbr, y = Data_Value, color = StateAbbr)) +
  geom_boxplot(outlier.colour="black", outlier.shape=16,
             outlier.size=2, notch=FALSE) +
  geom_jitter(shape=16, position=position_jitter(0.4)) +
   scale_color_brewer(palette = "Set1") +
  theme_bw() +
  labs( title = "Disparities in Health Insurance: DMV", color = "State" ) + 
  guides(color = guide_legend(override.aes = list(size = 5))) +
  ylab( "Lacking Health Insurance (Percent)" ) +
  xlab( "State/Peoples w/out Representation" ) +
  theme( legend.position = c(0.15,0.8),
         plot.title = element_text(hjust = 0.5) )
Warning: Removed 3 rows containing non-finite values (`stat_boxplot()`).
Warning: Removed 3 rows containing missing values (`geom_point()`).

3. Now create a map of your subsetted dataset.

First map chunk here

leaflet() |>
 setView(lng = -77.039, lat = 38.9, zoom = 11) |>
 addProviderTiles(providers$CartoDB.Positron) |>
  addCircles(
 data = DMV,
 radius = DMV$Data_Value*10,
 color = "#14010d",
 fillColor = "#f2079c",
 fillOpacity = 0.25)
Assuming "long" and "lat" are longitude and latitude, respectively

4. Refine your map to include a mousover tooltip

Refined map chunk here

palette <- colorNumeric(
  palette = c( "red","orange", "skyblue", "purple", "navy" ), # define your color range
  domain = DMV$Data_Value # define the data range
)
popupDMV <- paste0(
 "<strong>City: </strong>", DMV$CityName, "<br>",
 "<b>Year: </b>", DMV$Year, "<br>",
 "<b>Population: </b>", DMV$PopulationCount, "<br>",
 "<b>Lack HC Access %: </b>", DMV$Data_Value, "<br>",
 "<b>Obesity %: </b>", DMV_OBESITY$Data_Value, "<br>",
 "<b>Binge Drinking %: </b>", DMV_BINGE$Data_Value, "<br>"
 )

leaflet() %>%
  setView(lng = -77.039, lat = 38.9, zoom = 11.4) %>%
  addProviderTiles(providers$CartoDB.Positron) %>%
  addCircles(
    data = DMV,
    radius = ~Data_Value * 10,
    color = ~palette(Data_Value),
    fillColor = ~palette(Data_Value),
    fillOpacity = 0.9,
    popup = popupDMV
  )
Assuming "long" and "lat" are longitude and latitude, respectively

5. Write a paragraph

In a paragraph, describe the plots you created and what they show. Plot 1 shows the difference in the lack of insurance coverage in the DMV (although the data seems to be central to certain densely populated areas). It demonstrates that Virginia has a wider range of coverage depending on the location reaching a high above 30%, whereas Maryland reaches ~ 25% at its peak. Plot 2, being a crude version of plot 3, shows the vague disparities in coverage in VA with its bigger circles. Plot 3 demonstrates, through color and size, the outliers and the potential socioeconomic differences in DC. It must be noted that the data set only looked at Baltimore as it pertained to Maryland, so the map is not as fleshed out as i would have preferred. You could almost draw a line along where the red and orange points meet, possibly indicating wealthier areas of DC. I also added Obesity & binge drinking to the popup to allow for further analysis. I will be adding the Maps for those two health outcomes below this. The white background was added for further contrast with the data points. The binge drinking rates are highest in the center of DC (you could probably guess why), and the obesity rates follow similar lines to the healthcare coverage as seen below.

palette <- colorNumeric(
  palette = c( "red","orange", "skyblue", "purple", "navy" ), # define your color range
  domain = DMV_BINGE$Data_Value # define the data range
)
popupDMV <- paste0(
 "<strong>City: </strong>", DMV$CityName, "<br>",
 "<b>Year: </b>", DMV$Year, "<br>",
 "<b>Population: </b>", DMV$PopulationCount, "<br>",
 "<b>Lack HC Access %: </b>", DMV$Data_Value, "<br>",
 "<b>Obesity %: </b>", DMV_OBESITY$Data_Value, "<br>",
 "<b>Binge Drinking %: </b>", DMV_BINGE$Data_Value, "<br>"
 )

leaflet() %>%
  setView(lng = -77.039, lat = 38.9, zoom = 11.4) %>%
  addProviderTiles(providers$CartoDB.Positron) %>%
  addCircles(
    data = DMV_BINGE,
    radius = ~Data_Value * 10,
    color = ~palette(Data_Value),
    fillColor = ~palette(Data_Value),
    fillOpacity = 0.9,
    popup = popupDMV
  )
Assuming "long" and "lat" are longitude and latitude, respectively
palette <- colorNumeric(
  palette = c( "red","orange", "skyblue", "purple", "navy" ), # define your color range
  domain = DMV_OBESITY$Data_Value # define the data range
)
popupDMV <- paste0(
 "<strong>City: </strong>", DMV$CityName, "<br>",
 "<b>Year: </b>", DMV$Year, "<br>",
 "<b>Population: </b>", DMV$PopulationCount, "<br>",
 "<b>Lack HC Access %: </b>", DMV$Data_Value, "<br>",
 "<b>Obesity %: </b>", DMV_OBESITY$Data_Value, "<br>",
 "<b>Binge Drinking %: </b>", DMV_BINGE$Data_Value, "<br>"
 )

leaflet() %>%
  setView(lng = -77.039, lat = 38.9, zoom = 11.4) %>%
  addProviderTiles(providers$CartoDB.Positron) %>%
  addCircles(
    data = DMV_OBESITY,
    radius = ~Data_Value * 10,
    color = ~palette(Data_Value),
    fillColor = ~palette(Data_Value),
    fillOpacity = 0.9,
    popup = popupDMV
  )
Assuming "long" and "lat" are longitude and latitude, respectively