Trained using 2010 data and tested using 2011 data.
FuelEconomy.lm <- lm(FE ~ EngDispl, data = cars2010)
mse1.lm <- mean(residuals(FuelEconomy.lm)^2)
print(rmse1.lm <- sqrt(mse1.lm))
[1] 4.620076
summary(FuelEconomy.lm) gives R2 = 0.6196FuelEconomy.q <- lm(FE ~ EngDispl + I(EngDispl^2), data = cars2010)
mse2.lm <- mean(residuals(FuelEconomy.q)^2)
print(rmse2.lm <- sqrt(mse2.lm))
[1] 4.234826
summary(FuelEconomy.q) gives R2 = 0.6801# R2
errors <- (DataFrame2011$y2 - DataFrame2011$y1)
1 - sum(errors^2)/sum((DataFrame2011$y2 - mean(DataFrame2011$y2))^2)
# RMSE
sqrt(mean((DataFrame2011$y2 - DataFrame2011$y1)^2))
# R2
errors.lm <- (DataFrame2011_lm$y2 - DataFrame2011_lm$y1)
1 - sum(errors.lm^2)/sum((DataFrame2011_lm$y2 - mean(DataFrame2011_lm$y2))^2
# RMSE
sqrt(mean((DataFrame2011_lm$y2 - DataFrame2011_lm$y1)^2)