library(tidyverse)
library(RColorBrewer)
library(leaflet)
setwd("/Users/bryana/Documents/Data110/Datasets")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")Healthy Cities GIS Assignment
Load the libraries and set the working directory
The GeoLocation variable has (lat, long) format
Split GeoLocation (lat, long) into two columns: lat and long
latlong <- cities500|>
mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne Census Tract BRFSS Health Outcom…
2 2017 CA California Hawthorne City BRFSS Unhealthy Beh…
3 2017 CA California Hayward City BRFSS Health Outcom…
4 2017 CA California Hayward City BRFSS Unhealthy Beh…
5 2017 CA California Hemet City BRFSS Prevention
6 2017 CA California Indio Census Tract BRFSS Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
Filter the dataset
Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.
latlong_clean <- latlong |>
filter(StateDesc != "United States") |>
filter(Category == "Prevention") |>
filter(Data_Value_Type == "Crude prevalence") |>
filter(Year == 2017)
head(latlong_clean)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 AL Alabama Montgomery City BRFSS Prevention
2 2017 CA California Concord City BRFSS Prevention
3 2017 CA California Concord City BRFSS Prevention
4 2017 CA California Fontana City BRFSS Prevention
5 2017 CA California Richmond Census Tract BRFSS Prevention
6 2017 FL Florida Davie Census Tract BRFSS Prevention
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
What variables are included? (can any of them be removed?)
names(latlong_clean) [1] "Year" "StateAbbr"
[3] "StateDesc" "CityName"
[5] "GeographicLevel" "DataSource"
[7] "Category" "UniqueID"
[9] "Measure" "Data_Value_Unit"
[11] "DataValueTypeID" "Data_Value_Type"
[13] "Data_Value" "Low_Confidence_Limit"
[15] "High_Confidence_Limit" "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote" "PopulationCount"
[19] "lat" "long"
[21] "CategoryID" "MeasureId"
[23] "CityFIPS" "TractFIPS"
[25] "Short_Question_Text"
Remove the variables that will not be used in the assignment
prevention <- latlong_clean |>
select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 AL Alabama Montgome… City Prevent… 151000 Choles…
2 2017 CA California Concord City Prevent… 616000 Visits…
3 2017 CA California Concord City Prevent… 616000 Choles…
4 2017 CA California Fontana City Prevent… 624680 Visits…
5 2017 CA California Richmond Census Tract Prevent… 0660620… Choles…
6 2017 FL Florida Davie Census Tract Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
md <- prevention |>
filter(StateAbbr=="MD")
head(md)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Chole…
2 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
3 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
4 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Curre…
5 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Curre…
6 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
The new dataset “Prevention” is a manageable dataset now.
For your assignment, work with the cleaned “Prevention” dataset
1. Once you run the above code, filter this dataset one more time for any particular subset.
I want to explore unhealthy behaviors in the DMV area
latlong_clean2 <- latlong |>
filter(StateAbbr == "MD" | StateAbbr == "DC" | StateAbbr == "VA") |>
filter(Category == "Unhealthy Behaviors") |>
filter(Data_Value_Type == "Crude prevalence") |>
filter(Year == 2017)I’m going to clean up the unnecessary columns from the data frame
unhealthy <- latlong_clean2 |>
select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote, -CityFIPS, -TractFIPS, -UniqueID)2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.
To create the bar graph I need to figure out how many people in the population do the unhealthy behavior. I can use the percentage and population count to figure this out.
unhealthy$NumberOfPeople <- unhealthy$PopulationCount * (unhealthy$Data_Value / 100)ggplot(unhealthy, aes(x = StateAbbr, y = NumberOfPeople, fill = Short_Question_Text)) +
geom_bar(stat = "identity", position = "dodge") +
theme_classic() +
scale_fill_brewer(palette = "Set2") +
labs(title = "Unhealthy Behaviors in the DMV during 2017", x = "US State", y = "Number of People", fill = "Unhealthy Behavior")Warning: Removed 16 rows containing missing values (`geom_bar()`).
3. Now create a map of your subsetted dataset.
I want to plot the obesity unhealthy behavior but only focus on Maryland.
md_unhealthy <- unhealthy |>
filter(StateAbbr == "MD") |>
filter(MeasureId == "OBESITY")leaflet() |>
setView(lng = -76.6, lat = 39.3, zoom = 11.5) |>
addProviderTiles("Esri.NatGeoWorldMap") |>
addCircles(
data = md_unhealthy,
radius = md_unhealthy$Data_Value * 5,
color = "#14010d",
fillColor = "#7393B3",
fillOpacity = 0.25
)Assuming "long" and "lat" are longitude and latitude, respectively
4. Refine your map to include a mouseover tooltip
Refined map chunk here
popupmd <- paste0(
"<b>Year: </b>", md_unhealthy$Year, "<br>",
"<b>Unhealthy Behavior: </b>", md_unhealthy$Measure, "<br>",
"<b>Population: </b>", md_unhealthy$PopulationCount, "<br>",
"<b>People Particpiating in Bad Behavior: </b>", md_unhealthy$NumberOfPeople, "<br>",
"<b>Percentage Particpiating in Bad Behavior: </b>", md_unhealthy$Data_Value, "<br>"
)leaflet() |>
setView(lng = -76.6, lat = 39.3, zoom = 11.5) |>
addProviderTiles("Esri.NatGeoWorldMap") |>
addCircles(
data = md_unhealthy,
radius = md_unhealthy$Data_Value * 4,
color = "#14010d",
fillColor = "#7393B3",
fillOpacity = 0.25,
popup = popupmd
)Assuming "long" and "lat" are longitude and latitude, respectively
5. Write a paragraph
In my first plot, I created a bar graph illustrating the differences in unhealthy behaviors for the DMV. The graph shows that across the DMV, there are more obese people than binge drinkers, physically inactive people, and smokers. Maryland also has the highest number of obese people, physically inactive people, and smokers when compared to the DC and Virginia In my second plot, I created a map plotting where the highest number of obese people are in Baltimore, Marlyland. The map shows that the city is where the highest concentration of obese people are. This is to be expected since there are more people in the city than in the areas surrounding it.