Question 7.2:

Friedman (1991) introduced several benchmark data sets create by simulation. One of these simulations used the following nonlinear equation to create data:

\(y = 10 sin(\pi x_1x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5 + N(0, \sigma^2)\)

where the x values are random variables uniformly distributed between [0, 1] (there are also 5 other non-informative variables also created in the simulation). The package mlbench contains a function called mlbench.friedman1 that simulates these data:

library(mlbench)

set.seed(200)

trainingData <- mlbench.friedman1(200, sd = 1)

## We convert the 'x' data from a matrix to a data frame
## One reason is that this will give the columns names.
trainingData$x <- data.frame(trainingData$x)

## Look at the data using
featurePlot(trainingData$x, trainingData$y)

## This creates a list with a vector 'y' and a matrix
## of predictors 'x'. Also simulate a large test set to
## estimate the true error rate with good precision:
testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x)

Tune several models on these data. For example:

KNN Model

library(caret)
knnModel <- train(x = trainingData$x, 
                  y = trainingData$y,
                  method = "knn",
                  preProc = c("center", "scale"),
                  tuneLength = 10)

knnModel
## k-Nearest Neighbors 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  3.466085  0.5121775  2.816838
##    7  3.349428  0.5452823  2.727410
##    9  3.264276  0.5785990  2.660026
##   11  3.214216  0.6024244  2.603767
##   13  3.196510  0.6176570  2.591935
##   15  3.184173  0.6305506  2.577482
##   17  3.183130  0.6425367  2.567787
##   19  3.198752  0.6483184  2.592683
##   21  3.188993  0.6611428  2.588787
##   23  3.200458  0.6638353  2.604529
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)

## The function 'postResample' can be used to get the test set
## perforamnce values
postResample(pred = knnPred, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 3.2040595 0.6819919 2.5683461

NN Model

nnetGrid <- expand.grid(.decay = c(0,0.01,.1),
                        .size = c(1:5),
                        .bag = FALSE)

nnetFit <- train(trainingData$x, trainingData$y,
                  method = 'avNNet',
                  tuneGrid = nnetGrid,
                  preProc = c('center','scale'),
                  linout = TRUE,
                  trace = FALSE,
                  MaxNWts = 5 * (ncol(trainingData$x) + 1 + 5 + 1),
                  maxit = 100
  
)

nnetFit
## Model Averaged Neural Network 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  RMSE      Rsquared   MAE     
##   0.00   1     2.565214  0.7424510  2.011320
##   0.00   2     2.577406  0.7382329  2.028408
##   0.00   3     2.337417  0.7825332  1.839583
##   0.00   4     2.729590  0.7185699  2.068292
##   0.00   5     2.629962  0.7367168  2.040611
##   0.01   1     2.556163  0.7421467  1.992682
##   0.01   2     2.562614  0.7432748  1.996182
##   0.01   3     2.351816  0.7804277  1.860291
##   0.01   4     2.439330  0.7691751  1.927696
##   0.01   5     2.572200  0.7424606  2.028893
##   0.10   1     2.518290  0.7488257  1.952082
##   0.10   2     2.543715  0.7440260  2.007897
##   0.10   3     2.283904  0.7929747  1.807032
##   0.10   4     2.371849  0.7798611  1.883289
##   0.10   5     2.474275  0.7627753  1.959351
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 3, decay = 0.1 and bag = FALSE.
nnetPred <- predict(nnetFit, newdata = testData$x)

postResample(pred = nnetPred, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 2.2087518 0.8066003 1.6628115

MARS Model

# create a tuning grid
marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:38)

set.seed(100)

# tune
marsTune <- train(trainingData$x, trainingData$y,
                  method = "earth",
                  tuneGrid = marsGrid,
                  trControl = trainControl(method = "cv"))

marsTune
## Multivariate Adaptive Regression Spline 
## 
## 200 samples
##  10 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE     
##   1        2      4.327937  0.2544880  3.600474
##   1        3      3.572450  0.4912720  2.895811
##   1        4      2.596841  0.7183600  2.106341
##   1        5      2.370161  0.7659777  1.918669
##   1        6      2.276141  0.7881481  1.810001
##   1        7      1.766728  0.8751831  1.390215
##   1        8      1.780946  0.8723243  1.401345
##   1        9      1.665091  0.8819775  1.325515
##   1       10      1.663804  0.8821283  1.327657
##   1       11      1.657738  0.8822967  1.331730
##   1       12      1.653784  0.8827903  1.331504
##   1       13      1.648496  0.8823663  1.316407
##   1       14      1.639073  0.8841742  1.312833
##   1       15      1.639073  0.8841742  1.312833
##   1       16      1.639073  0.8841742  1.312833
##   1       17      1.639073  0.8841742  1.312833
##   1       18      1.639073  0.8841742  1.312833
##   1       19      1.639073  0.8841742  1.312833
##   1       20      1.639073  0.8841742  1.312833
##   1       21      1.639073  0.8841742  1.312833
##   1       22      1.639073  0.8841742  1.312833
##   1       23      1.639073  0.8841742  1.312833
##   1       24      1.639073  0.8841742  1.312833
##   1       25      1.639073  0.8841742  1.312833
##   1       26      1.639073  0.8841742  1.312833
##   1       27      1.639073  0.8841742  1.312833
##   1       28      1.639073  0.8841742  1.312833
##   1       29      1.639073  0.8841742  1.312833
##   1       30      1.639073  0.8841742  1.312833
##   1       31      1.639073  0.8841742  1.312833
##   1       32      1.639073  0.8841742  1.312833
##   1       33      1.639073  0.8841742  1.312833
##   1       34      1.639073  0.8841742  1.312833
##   1       35      1.639073  0.8841742  1.312833
##   1       36      1.639073  0.8841742  1.312833
##   1       37      1.639073  0.8841742  1.312833
##   1       38      1.639073  0.8841742  1.312833
##   2        2      4.327937  0.2544880  3.600474
##   2        3      3.572450  0.4912720  2.895811
##   2        4      2.661826  0.7070510  2.173471
##   2        5      2.404015  0.7578971  1.975387
##   2        6      2.243927  0.7914805  1.783072
##   2        7      1.856336  0.8605482  1.435682
##   2        8      1.754607  0.8763186  1.396841
##   2        9      1.603578  0.8938666  1.261361
##   2       10      1.492421  0.9084998  1.168700
##   2       11      1.317350  0.9292504  1.033926
##   2       12      1.304327  0.9320133  1.019108
##   2       13      1.277510  0.9323681  1.002927
##   2       14      1.269626  0.9350024  1.003346
##   2       15      1.266217  0.9359400  1.013893
##   2       16      1.268470  0.9354868  1.011414
##   2       17      1.268470  0.9354868  1.011414
##   2       18      1.268470  0.9354868  1.011414
##   2       19      1.268470  0.9354868  1.011414
##   2       20      1.268470  0.9354868  1.011414
##   2       21      1.268470  0.9354868  1.011414
##   2       22      1.268470  0.9354868  1.011414
##   2       23      1.268470  0.9354868  1.011414
##   2       24      1.268470  0.9354868  1.011414
##   2       25      1.268470  0.9354868  1.011414
##   2       26      1.268470  0.9354868  1.011414
##   2       27      1.268470  0.9354868  1.011414
##   2       28      1.268470  0.9354868  1.011414
##   2       29      1.268470  0.9354868  1.011414
##   2       30      1.268470  0.9354868  1.011414
##   2       31      1.268470  0.9354868  1.011414
##   2       32      1.268470  0.9354868  1.011414
##   2       33      1.268470  0.9354868  1.011414
##   2       34      1.268470  0.9354868  1.011414
##   2       35      1.268470  0.9354868  1.011414
##   2       36      1.268470  0.9354868  1.011414
##   2       37      1.268470  0.9354868  1.011414
##   2       38      1.268470  0.9354868  1.011414
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 15 and degree = 2.
marsPred <- predict(marsTune, testData$x)

postResample(marsPred, testData$y)
##      RMSE  Rsquared       MAE 
## 1.1589948 0.9460418 0.9250230
varImp(marsTune)
## earth variable importance
## 
##    Overall
## X1  100.00
## X4   75.24
## X2   48.73
## X5   15.52
## X3    0.00

SVM Model

set.seed(100)

# tune
svmRTune <- train(trainingData$x, trainingData$y,
                  method = "svmRadial",
                  preProc = c("center", "scale"),
                  tuneLength = 14,
                  trControl = trainControl(method = "cv"))

svmRTune
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   C        RMSE      Rsquared   MAE     
##      0.25  2.530787  0.7922715  2.013175
##      0.50  2.259539  0.8064569  1.789962
##      1.00  2.099789  0.8274242  1.656154
##      2.00  2.002943  0.8412934  1.583791
##      4.00  1.943618  0.8504425  1.546586
##      8.00  1.918711  0.8547582  1.532981
##     16.00  1.920651  0.8536189  1.536116
##     32.00  1.920651  0.8536189  1.536116
##     64.00  1.920651  0.8536189  1.536116
##    128.00  1.920651  0.8536189  1.536116
##    256.00  1.920651  0.8536189  1.536116
##    512.00  1.920651  0.8536189  1.536116
##   1024.00  1.920651  0.8536189  1.536116
##   2048.00  1.920651  0.8536189  1.536116
## 
## Tuning parameter 'sigma' was held constant at a value of 0.06509124
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06509124 and C = 8.
svmRPred <- predict(svmRTune, testData$x)

postResample(svmRPred, testData$y)
##      RMSE  Rsquared       MAE 
## 2.0631908 0.8275736 1.5662213

Which models appear to give the best performance? Does MARS select the informative predictors (those named X1–X5)?

The MARS model produces the best results with a Rsquared of 0.9460418 on the test set. The Mars model only uses the informative predictors, X1-X5.

Question 7.5:

Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.

data(ChemicalManufacturingProcess)

# imputation
miss <- preProcess(ChemicalManufacturingProcess, method = "bagImpute")
Chemical <- predict(miss, ChemicalManufacturingProcess)

# filtering low frequencies
Chemical <- Chemical[, -nearZeroVar(Chemical)]

set.seed(624)

# index for training
index <- createDataPartition(Chemical$Yield, p = .8, list = FALSE)

# train 
train_x <- Chemical[index, -1]
train_y <- Chemical[index, 1]

# test
test_x <- Chemical[-index, -1]
test_y <- Chemical[-index, 1]
  1. Which nonlinear regression model gives the optimal resampling and test set performance?

KNN Model

knnModel <- train(train_x, train_y,
                  method = "knn",
                  preProc = c("center", "scale"),
                  tuneLength = 10)

knnModel
## k-Nearest Neighbors 
## 
## 144 samples
##  56 predictor
## 
## Pre-processing: centered (56), scaled (56) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 144, 144, 144, 144, 144, 144, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  1.471125  0.3330992  1.161484
##    7  1.447346  0.3519621  1.150975
##    9  1.439505  0.3614781  1.153856
##   11  1.440067  0.3597565  1.157491
##   13  1.446347  0.3556436  1.165135
##   15  1.437409  0.3693582  1.165991
##   17  1.448196  0.3618152  1.176400
##   19  1.452990  0.3601724  1.182114
##   21  1.456702  0.3606783  1.183356
##   23  1.457503  0.3658775  1.185981
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 15.
knnPred <- predict(knnModel, test_x)

## The function 'postResample' can be used to get the test set
## perforamnce values
postResample(pred = knnPred, test_y)
##      RMSE  Rsquared       MAE 
## 1.5262067 0.6187302 1.1800625

NN Model

# remove predictors to ensure maximum abs pairwise corr between predictors < 0.75
tooHigh <- findCorrelation(cor(train_x), cutoff = .75)

# removing 21 variables
train_x_nnet <- train_x[, -tooHigh]
test_x_nnet <- test_x[, -tooHigh]

# create a tuning grid
nnetGrid <- expand.grid(.decay = c(0, 0.01, .1),
                        .size = c(1:10))

# 10-fold cross-validation to make reasonable estimates
ctrl <- trainControl(method = "cv", number = 10)

set.seed(100)

# tune
nnetTune <- train(train_x_nnet, train_y,
                  method = "nnet",
                  tuneGrid = nnetGrid,
                  trControl = ctrl,
                  preProc = c("center", "scale"),
                  linout = TRUE,
                  trace = FALSE,
                  MaxNWts = 10 * (ncol(train_x_nnet) + 1) + 10 + 1,
                  maxit = 500)

nnetTune
## Neural Network 
## 
## 144 samples
##  35 predictor
## 
## Pre-processing: centered (35), scaled (35) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 129, 130, 130, 130, 130, 130, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  RMSE      Rsquared   MAE     
##   0.00    1    1.653183  0.2181442  1.345706
##   0.00    2    2.534424  0.2369899  1.836159
##   0.00    3    3.171155  0.2926531  2.287708
##   0.00    4    3.711481  0.1209223  2.917563
##   0.00    5    3.431171  0.1500184  2.741639
##   0.00    6    4.519146  0.1324394  3.247006
##   0.00    7    4.572852  0.1511347  3.586819
##   0.00    8    4.897815  0.1777553  3.195740
##   0.00    9    6.323278  0.1664817  4.360992
##   0.00   10    8.667370  0.1152399  5.988899
##   0.01    1    1.667606  0.3154025  1.388167
##   0.01    2    2.265838  0.1993149  1.714076
##   0.01    3    2.332248  0.2440199  1.842895
##   0.01    4    3.002585  0.1568784  2.241891
##   0.01    5    2.559003  0.2072487  1.958315
##   0.01    6    2.615888  0.2014615  2.003966
##   0.01    7    2.704167  0.1873030  2.115345
##   0.01    8    2.884852  0.1905781  2.225486
##   0.01    9    2.664823  0.2242711  2.139448
##   0.01   10    3.327161  0.2317687  2.496622
##   0.10    1    1.618516  0.3543468  1.325739
##   0.10    2    1.852789  0.3901490  1.390430
##   0.10    3    2.907373  0.1839412  2.024455
##   0.10    4    2.664748  0.1941929  1.965063
##   0.10    5    2.946770  0.2249056  2.098324
##   0.10    6    2.533430  0.2964670  1.884063
##   0.10    7    2.175251  0.3069320  1.702581
##   0.10    8    2.696990  0.1964820  1.966580
##   0.10    9    2.282723  0.2395294  1.862798
##   0.10   10    2.780285  0.1640235  2.034794
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 1 and decay = 0.1.
nnPred <- predict(nnetTune, test_x_nnet)

postResample(nnPred, test_y)
##      RMSE  Rsquared       MAE 
## 1.5064579 0.5140357 1.1159762

Mars Model

# create a tuning grid
marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:38)

set.seed(100)

# tune
marsTune <- train(train_x, train_y,
                  method = "earth",
                  tuneGrid = marsGrid,
                  trControl = trainControl(method = "cv"))

marsTune
## Multivariate Adaptive Regression Spline 
## 
## 144 samples
##  56 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 129, 130, 130, 130, 130, 130, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE      
##   1        2      1.382295  0.4386629  1.1032611
##   1        3      1.240867  0.5448952  0.9985512
##   1        4      1.259935  0.5341424  1.0107010
##   1        5      1.245790  0.5272274  1.0113559
##   1        6      1.269935  0.5136793  1.0204522
##   1        7      1.310209  0.5055710  1.0295204
##   1        8      1.288293  0.5221112  1.0036609
##   1        9      1.293021  0.5193283  1.0156268
##   1       10      1.286486  0.5258144  1.0107051
##   1       11      1.350612  0.5108572  1.0494019
##   1       12      1.354690  0.5164837  1.0502417
##   1       13      1.371710  0.5124198  1.0535178
##   1       14      1.386234  0.5064731  1.0729218
##   1       15      1.377159  0.5169364  1.0708723
##   1       16      1.377159  0.5169364  1.0708723
##   1       17      1.377159  0.5169364  1.0708723
##   1       18      1.377159  0.5169364  1.0708723
##   1       19      1.377159  0.5169364  1.0708723
##   1       20      1.377159  0.5169364  1.0708723
##   1       21      1.377159  0.5169364  1.0708723
##   1       22      1.377159  0.5169364  1.0708723
##   1       23      1.377159  0.5169364  1.0708723
##   1       24      1.377159  0.5169364  1.0708723
##   1       25      1.377159  0.5169364  1.0708723
##   1       26      1.377159  0.5169364  1.0708723
##   1       27      1.377159  0.5169364  1.0708723
##   1       28      1.377159  0.5169364  1.0708723
##   1       29      1.377159  0.5169364  1.0708723
##   1       30      1.377159  0.5169364  1.0708723
##   1       31      1.377159  0.5169364  1.0708723
##   1       32      1.377159  0.5169364  1.0708723
##   1       33      1.377159  0.5169364  1.0708723
##   1       34      1.377159  0.5169364  1.0708723
##   1       35      1.377159  0.5169364  1.0708723
##   1       36      1.377159  0.5169364  1.0708723
##   1       37      1.377159  0.5169364  1.0708723
##   1       38      1.377159  0.5169364  1.0708723
##   2        2      1.382295  0.4386629  1.1032611
##   2        3      1.237952  0.5375297  1.0083290
##   2        4      1.253568  0.5221886  1.0335088
##   2        5      1.204199  0.5507043  0.9713244
##   2        6      1.241877  0.5180123  1.0022903
##   2        7      1.228535  0.5360710  0.9772064
##   2        8      1.236188  0.5297973  0.9891217
##   2        9      1.224202  0.5377333  0.9943605
##   2       10      1.196350  0.5532418  0.9855648
##   2       11      1.217007  0.5502910  1.0105749
##   2       12      1.236600  0.5473328  1.0021900
##   2       13      1.227170  0.5587354  0.9909744
##   2       14      1.263470  0.5599646  1.0158323
##   2       15      1.230580  0.5620079  1.0103784
##   2       16      1.241609  0.5506318  0.9964320
##   2       17      1.233933  0.5689345  0.9858733
##   2       18      1.241566  0.5806316  1.0029570
##   2       19      1.236775  0.5859195  0.9987440
##   2       20      1.317821  0.5266260  1.0648319
##   2       21      1.388138  0.5126592  1.1035179
##   2       22      1.402762  0.5068048  1.1134955
##   2       23      1.396884  0.5054997  1.1196368
##   2       24      1.380184  0.5113281  1.1059875
##   2       25      1.380184  0.5113281  1.1059875
##   2       26      1.386388  0.5070473  1.1174699
##   2       27      1.380683  0.5101973  1.1123044
##   2       28      1.361918  0.5211907  1.0932094
##   2       29      1.366147  0.5191619  1.0957169
##   2       30      1.366147  0.5191619  1.0957169
##   2       31      1.366147  0.5191619  1.0957169
##   2       32      1.360840  0.5200205  1.0921339
##   2       33      1.360840  0.5200205  1.0921339
##   2       34      1.360840  0.5200205  1.0921339
##   2       35      1.360840  0.5200205  1.0921339
##   2       36      1.360840  0.5200205  1.0921339
##   2       37      1.360840  0.5200205  1.0921339
##   2       38      1.360840  0.5200205  1.0921339
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 10 and degree = 2.
marsPred <- predict(marsTune, test_x)

postResample(marsPred, test_y)
##      RMSE  Rsquared       MAE 
## 1.3464789 0.6138875 0.9826902

SVM Model

set.seed(100)

# tune
svmRTune <- train(train_x, train_y,
                  method = "svmRadial",
                  preProc = c("center", "scale"),
                  tuneLength = 14,
                  trControl = trainControl(method = "cv"))

svmRTune
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 144 samples
##  56 predictor
## 
## Pre-processing: centered (56), scaled (56) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 129, 130, 130, 130, 130, 130, ... 
## Resampling results across tuning parameters:
## 
##   C        RMSE      Rsquared   MAE      
##      0.25  1.413177  0.4630126  1.1760898
##      0.50  1.314625  0.5018046  1.0947625
##      1.00  1.217731  0.5647210  1.0095889
##      2.00  1.164634  0.5994161  0.9630243
##      4.00  1.124391  0.6199423  0.9192936
##      8.00  1.119796  0.6170091  0.9287431
##     16.00  1.118734  0.6174115  0.9308110
##     32.00  1.118734  0.6174115  0.9308110
##     64.00  1.118734  0.6174115  0.9308110
##    128.00  1.118734  0.6174115  0.9308110
##    256.00  1.118734  0.6174115  0.9308110
##    512.00  1.118734  0.6174115  0.9308110
##   1024.00  1.118734  0.6174115  0.9308110
##   2048.00  1.118734  0.6174115  0.9308110
## 
## Tuning parameter 'sigma' was held constant at a value of 0.0139359
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.0139359 and C = 16.
svmRPred <- predict(svmRTune, test_x)

postResample(svmRPred, test_y)
##      RMSE  Rsquared       MAE 
## 1.1412463 0.7513994 0.8006586
rbind(knn = postResample(knnPred, test_y),
      nn = postResample(nnPred, test_y),
      mars = postResample(marsPred, test_y),
      svmR = postResample(svmRPred, test_y))
##          RMSE  Rsquared       MAE
## knn  1.526207 0.6187302 1.1800625
## nn   1.506458 0.5140357 1.1159762
## mars 1.346479 0.6138875 0.9826902
## svmR 1.141246 0.7513994 0.8006586

SVM gives the best performance with the radial method as it has the lowest RMSE and MAE and the highest RSquared = 0.7513994.

  1. Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?
varImp(svmRTune)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 56)
## 
##                        Overall
## ManufacturingProcess32  100.00
## BiologicalMaterial06     89.32
## BiologicalMaterial03     77.48
## ManufacturingProcess36   76.64
## ManufacturingProcess09   73.90
## ManufacturingProcess13   73.24
## ManufacturingProcess31   67.06
## BiologicalMaterial02     66.92
## BiologicalMaterial12     64.94
## ManufacturingProcess06   59.23
## ManufacturingProcess17   53.07
## BiologicalMaterial11     49.11
## BiologicalMaterial04     48.27
## ManufacturingProcess11   45.42
## ManufacturingProcess29   45.31
## ManufacturingProcess33   44.62
## BiologicalMaterial01     40.70
## BiologicalMaterial08     38.19
## ManufacturingProcess30   35.52
## BiologicalMaterial09     29.60
plot(varImp(svmRTune), top = 20) 

set.seed(100)

larsTune <- train(train_x, train_y, 
                  method = "lars", 
                  metric = "Rsquared",
                  tuneLength = 20, 
                  trControl = ctrl, 
                  preProc = c("center", "scale"))

lars_predict <- predict(larsTune, test_x)

The top ten important predictors are the same as the top ten predictors from the optimal linear model, which was the LARS model.

plot(varImp(svmRTune), top = 10,
     main = "Nonlinear: Top 10 Important Predictors")

plot(varImp(larsTune), top = 10,
     main = "Linear: Top 10 Important Predictors")

  1. Explore the relationships between the top predictors and the response for the predictors that are unique to the optimal nonlinear regression model. Do these plots reveal intuition about the biological or process predictors and their relationship with yield?
top10 <- varImp(svmRTune)$importance %>%
  arrange(-Overall) %>%
  head(10)


Chemical %>%
  select(c("Yield", row.names(top10))) %>%
  cor() %>%
  corrplot()

train_x %>%
  select(row.names(top10)) %>%
  featurePlot(., train_y)

ManufacturingProcess32 has the most robust relationship with Yield, as seen by the correlation plot. Yield and two of the top 10 factors have a negative correlation.

While the relationship between the manufacturing methods and yield varies, it appears that the biological predictors have a favorable relationship with the yield. For example, ManufacturingProcess36 has levels, and ManufacturingProcess31 is primarily focused on a value.