MKmydata1 <- read_csv("../00_data/MKmyData1.csv")
## Rows: 101 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (8): id.on.tag, animal.name, scientific.name, tag.deployment.start, tag....
## dbl (5): Column1, prey.per.month, hours.indoor.per.day, cats.in.house, age
## lgl (4): hunt, dry.food, wet.food, other.food
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
MKmydata1$animal.name
## [1] "Tommy" "Athena" "Ares" "Lola"
## [5] "Maverick" "Coco" "Charlie" "Jago"
## [9] "Morpheus" "Nettle" "Meg" "Friday"
## [13] "Carbonel" "Fonzie" "Jessy" "Barney"
## [17] "Sparky" "Indie" "Whiskey" "Rusty"
## [21] "Mifty" "Wilfred" "Johnny" "Poppet"
## [25] "Pussy" "Henry" "Winnie" "Tom"
## [29] "Lady T" "Bella" "Ladyboyhawke" "Charlie2"
## [33] "Max" "Ebby" "Bear" "Bumbles"
## [37] "Chloe" "Merlin" "Felix" "Beanie"
## [41] "Sid" "Binky" "Amber" "Ernie"
## [45] "Bits" "Maxwell" "Lightening Bugg" "Bobs"
## [49] "Carrots" "Smudge" "Magic" "Spike"
## [53] "Dory" "Tigger" "Jago2" "Frank"
## [57] "Skye" "Jezebel" "Boots" "Smudge_2"
## [61] "Frank_2" "Freya" "Spot" "Tipsy"
## [65] "Flash" "Gracie" "Teddy" "Marley"
## [69] "Guinness" "Reggie" "Jessie" "Roger"
## [73] "Gracie_2" "Dexter" "Tilly" "Balu"
## [77] "Missy" "Dexter2" "Fairclough" "Keegan"
## [81] "Maggie" "Lily" "Abba" "Worf"
## [85] "Pants" "Jim" "Lucy" "Macaulay Mccat"
## [89] "Neil" "Siberia" "Moscow" "Neva"
## [93] "Alfie" "Casper" "Ginge" "Jasper"
## [97] "Charlie3" "Millie" "SmokeyLongnose" "CJ"
## [101] "Seb"
str_detect(MKmydata1$animal.name, "Charlie")
## [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] TRUE FALSE FALSE FALSE FALSE
sum(str_detect(MKmydata1$animal.name, "Charlie"))
## [1] 3
MKmydata1 %>%
summarise(num_Charlie = sum(str_detect(animal.name, "Charlie")))
## # A tibble: 1 × 1
## num_Charlie
## <int>
## 1 3
MKmydata1 %>%
mutate(col_Charlie = str_extract(animal.name, "Charlie")) %>%
select(animal.name, col_Charlie) %>%
filter(!is.na(col_Charlie))
## # A tibble: 3 × 2
## animal.name col_Charlie
## <chr> <chr>
## 1 Charlie Charlie
## 2 Charlie2 Charlie
## 3 Charlie3 Charlie
MKmydata1 %>%
mutate(col_CJ = str_replace(animal.name, "Charlie", "CJ")) %>%
select(animal.name, col_CJ)
## # A tibble: 101 × 2
## animal.name col_CJ
## <chr> <chr>
## 1 Tommy Tommy
## 2 Athena Athena
## 3 Ares Ares
## 4 Lola Lola
## 5 Maverick Maverick
## 6 Coco Coco
## 7 Charlie CJ
## 8 Jago Jago
## 9 Morpheus Morpheus
## 10 Nettle Nettle
## # ℹ 91 more rows