Import and clean data.
require(dplyr)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
## filter, lag
##
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
require(tidyr)
## Loading required package: tidyr
digaddat <- read.csv("C:\\Users\\Andrew\\Desktop\\Cuny\\Data Acquisition\\Project 2\\Ex1Advertising\\digadscomp.csv")
colnames(digaddat)[1] <- "year"
Tidying data. A little easier than I expected.
digitalads <- digaddat %>%
gather("company", "revenue", Google:AOL)
tbl_df(digitalads)
## Source: local data frame [25 x 3]
##
## year company revenue
## (int) (fctr) (dbl)
## 1 2009 Google 0.36
## 2 2010 Google 0.86
## 3 2011 Google 1.67
## 4 2012 Google 2.26
## 5 2013 Google 2.99
## 6 2009 Facebook 0.56
## 7 2010 Facebook 1.21
## 8 2011 Facebook 1.73
## 9 2012 Facebook 2.18
## 10 2013 Facebook 3.17
## .. ... ... ...
Total, average, and change in revenue by company. Facebook and Google earn the most revenue and have the largest growth as well. Yahoo is still a heavy hitter, but with stunted growth.
digitalads %>%
spread(year, revenue) %>%
mutate(improverevenue = `2013` - `2009`) %>%
gather(year, revenue, `2009`:`2013`) %>%
group_by(company) %>%
mutate(averagerevenue = mean(revenue)) %>%
group_by(company, improverevenue, averagerevenue) %>%
summarise(totalrevenue = sum(revenue)) %>%
arrange(desc(totalrevenue))
## Source: local data frame [5 x 4]
## Groups: company, improverevenue [5]
##
## company improverevenue averagerevenue totalrevenue
## (fctr) (dbl) (dbl) (dbl)
## 1 Google 2.63 1.628 8.14
## 2 Facebook 2.61 1.770 8.85
## 3 Yahoo 0.01 1.334 6.67
## 4 Microsoft 0.42 0.634 3.17
## 5 AOL 0.22 0.588 2.94
Total and average revenue by year; steady yearly total and average growth overall.
digitalads %>%
group_by(year) %>%
mutate(totalrevenue = sum(revenue)) %>%
group_by(year, totalrevenue) %>%
summarise(averagerevenue = mean(revenue))
## Source: local data frame [5 x 3]
## Groups: year [?]
##
## year totalrevenue averagerevenue
## (int) (dbl) (dbl)
## 1 2009 3.06 0.612
## 2 2010 4.48 0.896
## 3 2011 5.89 1.178
## 4 2012 7.39 1.478
## 5 2013 8.95 1.790