Membangkitkan Data

Skenario

Penerimaan calon mahasiswa baru SSD jalur seleksi mandiri tes, dengan jumlah pendaftar 400 orang.
Y : Keputusan menerima/menolak calon mahasiswa baru
X1 : Status kelulusan (0: lulusan baru, 1: gap 1 tahun, 2: gap 2 tahun)
X2 : Pendidikan terakhir (0: SMK, 1: SMA, 2: MA, 3: lainnya/sederajat)
X3 : Rata-rata nilai rapor pendidikan sebelumnya (0: di atas 70, 1: di bawah 70)
X4 : Nilai seleksi mandiri (skala 100)

Membangkitkan data X1

X1 : Status kelulusan (0= lulusan baru, 1= gap 1 tahun, 2= gap 2 tahun)
Membangkitkan peubah X1 yang merupakan bilangan acak uniform 0, 1, atau 2.
Status kelulusan pendaftar merupakan lulusan baru/lulus di tahun tersebut dan maksimal lulusan 2 tahun terakhir.

set.seed(4)
n <- 400
min_u <- 0
max_u <- 2
u <- runif(n, min = min_u, max = max_u)
x1 <- round(u)
x1
##   [1] 1 0 1 1 2 1 1 2 2 0 2 1 0 2 1 1 2 1 2 2 1 2 1 1 1 2 1 2 1 1 1 0 2 1 1 2 1
##  [38] 1 1 0 2 0 1 0 2 0 2 2 1 1 1 1 2 2 2 1 0 0 2 1 1 0 2 2 0 1 0 1 2 2 1 1 1 1
##  [75] 2 1 1 1 1 0 2 1 1 2 2 0 0 2 0 2 0 0 1 1 1 0 2 1 0 1 1 1 1 1 1 1 1 0 2 2 1
## [112] 1 1 1 2 1 1 2 2 0 0 1 2 1 0 1 2 0 1 1 1 0 1 0 2 2 1 1 1 0 1 1 1 2 0 1 1 2
## [149] 2 1 1 0 1 2 1 2 0 1 1 2 2 2 1 1 1 0 0 0 0 2 0 1 0 1 0 0 1 0 1 1 0 1 0 2 1
## [186] 0 1 1 2 2 1 2 2 0 1 1 2 1 1 0 2 2 1 1 1 0 1 1 1 0 0 2 2 1 2 1 0 0 0 1 1 1
## [223] 2 1 2 1 1 1 1 2 1 2 0 0 1 1 2 1 0 1 1 1 0 1 2 0 1 1 2 1 2 0 0 1 1 1 1 2 0
## [260] 2 2 0 1 0 0 0 0 1 1 2 2 2 1 1 1 2 0 2 2 1 2 1 2 0 0 0 1 0 0 1 1 0 0 1 1 2
## [297] 1 1 2 0 2 1 0 0 2 2 2 2 1 2 1 1 0 2 0 1 0 1 2 1 1 0 1 1 0 2 0 0 2 1 0 1 1
## [334] 1 0 0 1 2 1 0 2 0 1 0 1 0 0 1 2 0 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 0 2 1
## [371] 0 0 1 1 1 1 1 1 1 0 0 2 1 2 1 1 0 1 1 0 1 0 0 2 2 1 0 1 2 1

Membangkitkan data X2

X2 : Pendidikan terakhir (0= SMK, 1=SMA, 2=MA, 3= lainnya/sederajat)
Pendidikan terakhir pendaftar adalah riwayat pendidikan sebelumnya, pendaftar merupakan lulusan dari SMK/SMA/MA/sederajat.

set.seed(44)
min_x<- 0
max_x<- 3
x <- runif(n, min = min_x, max = max_x)
x2 <- round(x)
x2
##   [1] 2 1 2 2 0 0 1 0 0 1 0 0 2 0 1 1 0 1 1 1 2 1 1 1 1 1 1 2 1 2 2 2 3 0 0 2 3
##  [38] 1 3 1 2 1 2 1 1 1 1 1 1 1 0 0 1 2 3 2 3 1 2 0 1 1 3 1 3 3 0 2 2 3 2 0 2 1
##  [75] 2 2 1 0 1 3 1 2 1 1 1 1 3 2 3 3 1 1 1 2 1 1 3 2 1 1 0 2 2 3 0 2 0 2 3 0 3
## [112] 1 2 1 0 2 1 1 0 2 3 0 1 1 0 1 2 3 3 1 1 1 1 0 2 1 1 1 3 2 2 3 0 3 0 0 2 2
## [149] 2 3 1 1 1 1 1 2 0 2 3 1 2 1 2 3 0 3 0 2 2 1 2 1 1 1 1 2 2 2 2 1 3 0 3 1 1
## [186] 3 2 1 1 3 1 2 0 2 1 1 2 3 1 3 1 0 3 0 0 0 2 2 1 2 3 1 1 3 1 2 1 3 3 2 1 1
## [223] 1 1 0 2 1 0 2 1 1 2 1 2 3 2 1 1 3 2 1 2 2 2 2 1 2 1 1 1 3 3 1 1 3 2 1 2 3
## [260] 2 2 1 0 1 3 1 0 1 2 1 0 1 1 3 0 2 3 1 1 2 3 1 2 2 1 1 1 1 0 1 2 1 3 0 2 3
## [297] 1 3 3 0 1 2 2 0 2 2 1 0 1 1 1 3 2 2 0 1 3 2 2 2 1 2 1 1 0 0 1 0 2 1 1 2 2
## [334] 1 1 1 1 2 1 3 1 2 2 3 0 2 2 0 2 1 1 1 1 1 1 2 3 1 0 1 0 2 2 2 0 2 1 1 1 1
## [371] 1 0 0 0 3 0 3 0 3 1 2 1 0 0 2 0 1 1 3 3 2 2 2 2 1 1 0 3 1 1

Membangkitkan data X3

X3 : Rata-rata nilai rapor pendidikan sebelumnya (0=di atas 70, 1=di bawah 70)
Rata-rata nilai rapor semester 1-5 pendaftar pada pendidikan sebelumnya adalah di atas 70 atau di bawah 70 pada skala 100.

set.seed(444)
x3 <- round(runif(n))
x3
##   [1] 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0
##  [38] 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0
##  [75] 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1
## [112] 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0
## [149] 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0
## [186] 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 1 0
## [223] 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0
## [260] 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1
## [297] 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 1
## [334] 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0
## [371] 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1

Membangkitkan data X4

X4 : Nilai seleksi mandiri (skala 100)
Nilai seleksi mandiri pendaftar merupakan nilai hasil ujian seleksi mandiri dengan skala 100.

set.seed(4444)
x4 <- round(rnorm(n,85,5))
x4
##   [1]  96  75  77  88  90  88  87  87  85  91  89  79  77  85  91  82  83  93
##  [19]  81  81  78  83 100  89  86  89  82  89  85  85  86  88  88  83  77  84
##  [37]  94  78  85  84  89  71  85  82  85  85  86  85  80  81  83  91  83  88
##  [55]  83  85  90  95  85  82  89  89  85  81  92  83  73  87  78  86  81  88
##  [73]  88  91  92  88  94 101  87  83  85  84  80  92  81  87  82  84  86  84
##  [91]  90  83  85  95  78  90  80  87  85  86  91  91  86  83  89  90  89  80
## [109]  95  88  82  84  88  82  88  85  88  77  84  90  87  91  92  82  90  91
## [127]  94  87  84  79  78  86  84  87  75  80  97  85  81  93  72  79  86  91
## [145]  86  90  87  84  85  84  83  87  89  80  81  92  80  79  82  90  94  81
## [163]  87  81  87  88  91  85  88  88  87  86  88  82  75  80  83  86  85  91
## [181]  87  85  85  84  82  93  93  78  75  90  90  79  87  82  90  77  81  90
## [199]  86  87  87  87  85  86  88  87  83  89  89  96  95  87  84  86  82  76
## [217]  81  78  90  86  88  93  79  81  97  83  79  78  80  84  83  86  87  86
## [235]  85  87  94  78  83  86  86  85  74  89  80  85  88  73  77  81  92  86
## [253]  82  86  93  83  80  88  83  88  87  84  81  81  83  78  83  84 103  85
## [271]  97  87  86  80  89  86  85  90  85  85  79  84  81  84  85  85  84  89
## [289]  82  87  89  82  85  79  89  83  89  79  85  86  79  83  91  86  88  85
## [307]  88  95  80  77  90  78  81  86  85  81  79  82  88  81  83  87  88  84
## [325]  82  89  75  85  85  89  84  90  85  81  90  79  89  80  83  84  86  85
## [343]  87  90  85  89  84  86  78  73  76  83  82  78  95  78  95  82  85  78
## [361]  83  90  88  86  83  91  86  88  85  81  86  81  82  94  92  72  81  84
## [379]  88  87  86  95  94  81  83  82  76  89  93  83  80  82  99  84  84  85
## [397]  89  83  86  85

Membangkitkan data Y

Menentukan Koefisien

b0 <- -10
b1 <- -2
b2 <- 1.5
b3 <- 1
b4 <- 0.1
set.seed(44444)
datapenerimaan <- b0+(b1*x1)+(b2*x2)+(b3*x3)+(b4*x4)
datapenerimaan
##   [1]  0.6 -1.0 -1.3 -0.2 -5.0 -2.2 -0.8 -5.3 -4.5  0.6 -5.1 -4.1  0.7 -5.5 -1.4
##  [16] -1.3 -4.7 -0.2 -3.4 -4.4 -1.2 -3.2 -0.5 -1.6 -1.9 -3.6 -1.3 -2.1 -1.0  0.5
##  [31]  0.6  2.8 -0.7 -2.7 -4.3 -2.6  1.9 -2.7  2.0 -0.1 -2.1 -1.4 -0.5 -0.3 -3.0
##  [46]  1.0 -2.9 -4.0 -2.5 -2.4 -3.7 -1.9 -3.2 -2.2 -0.2  0.5  4.5  1.0 -1.5 -3.8
##  [61] -1.6  0.4 -1.0 -3.4  3.7  0.8 -2.7  0.7 -3.2  0.1  0.1 -3.2 -0.2 -1.4 -1.8
##  [76] -0.2 -0.1 -0.9 -1.8  3.8 -4.0 -0.6 -2.5 -2.3 -4.4  0.2  2.7 -1.6  4.1 -1.1
##  [91]  1.5 -0.2 -2.0  1.5 -2.7  1.5 -0.5 -0.3  1.0 -0.9 -2.9  0.1 -0.4  0.8 -3.1
## [106]  0.0 -2.1  2.0  0.0 -4.2  1.7 -2.1 -0.2 -2.3 -4.2 -0.5 -0.7 -4.8 -4.6  3.0
## [121]  4.2 -1.9 -2.3 -1.3 -1.0 -0.4 -1.6  3.2  0.9 -2.6 -1.7  1.1 -2.1 -0.3 -3.5
## [136] -3.5 -0.8 -1.0  0.6  3.3 -0.8  0.4 -3.4  0.6 -0.4 -3.0 -0.3 -2.6 -1.5  0.9
## [151] -2.2  1.2 -1.6 -3.5 -2.4 -0.8 -1.0 -0.1  1.7 -3.5 -1.6 -3.4 -0.3  1.6 -2.3
## [166]  4.3  0.1  2.5  2.8 -2.7  1.7 -1.9  1.3 -2.3 -1.0  1.0 -0.7  1.6  0.5 -0.4
## [181]  4.2 -3.5  4.0 -3.1 -2.3  3.8  1.3 -2.7 -5.0  0.5 -1.5 -3.1 -5.3  2.2 -1.5
## [196] -2.8 -2.9  2.5 -1.9  3.2 -3.8 -5.3  2.0 -2.4 -3.2 -1.3 -0.7  0.9 -1.6  3.6
## [211]  4.0 -3.8 -4.1  1.1 -3.3 -0.4 -0.4  3.3  4.5  0.6 -0.7 -1.2 -3.6 -1.4 -4.3
## [226]  0.3 -2.6 -3.2 -1.0 -4.1 -2.2 -1.4  0.2  2.6  2.0  0.7 -3.1 -1.7  3.8 -0.4
## [241] -0.9  0.5  0.4 -0.1 -3.0  1.0  0.8 -3.2 -4.8 -2.4 -0.3  4.1  0.7 -1.9  2.8
## [256] -0.7 -2.5 -1.2  2.8 -2.2 -2.3 -0.1 -3.9  0.6  2.8 -0.7 -0.7 -2.1  1.3 -3.0
## [271] -3.3 -2.8 -0.9  0.5 -2.1 -1.4  3.0 -3.5 -4.0 -0.5 -1.6 -1.1 -1.9  1.4  1.0
## [286]  0.0 -1.1  0.4 -0.8 -0.8  0.9  0.7  4.0 -4.1  0.9 -0.2 -1.6  0.4  0.0 -0.4
## [301] -4.6 -0.7  3.1 -1.4 -2.2 -2.5 -2.7 -4.5 -2.5 -4.8 -1.5  1.3  2.1 -1.4 -0.5
## [316] -2.4  2.4 -0.8 -2.2  0.1 -2.2  2.7 -1.7 -1.1 -1.8 -5.1 -1.0 -0.5 -2.5 -1.6
## [331] -0.1  0.0  0.5 -2.4  0.5  0.4 -1.6 -2.0 -2.2  2.9 -2.9  1.5 -0.3  4.5 -3.5
## [346]  2.9  2.4 -2.4 -2.2 -1.2 -1.9 -0.2 -2.3 -2.7 -1.0 -0.2  4.0 -2.3 -0.5 -1.7
## [361] -0.7  1.0  0.8  0.6 -3.7  0.1  1.1  0.3 -4.0 -2.4  0.1 -0.9 -3.8 -2.6  2.7
## [376] -4.8  0.6 -2.6  1.3  1.2  1.6 -3.0 -2.6 -5.9  0.3 -3.8  0.1 -0.6  1.8  3.8
## [391]  0.0  1.2  3.9 -1.6 -3.1 -2.0 -0.1  0.8 -3.9 -1.0
p <- exp(datapenerimaan)/(1+exp(datapenerimaan))
p
##   [1] 0.645656306 0.268941421 0.214165017 0.450166003 0.006692851 0.099750489
##   [7] 0.310025519 0.004966802 0.010986943 0.645656306 0.006059801 0.016302499
##  [13] 0.668187772 0.004070138 0.197816111 0.214165017 0.009013299 0.450166003
##  [19] 0.032295465 0.012128435 0.231475217 0.039165723 0.377540669 0.167981615
##  [25] 0.130108474 0.026596994 0.214165017 0.109096821 0.268941421 0.622459331
##  [31] 0.645656306 0.942675824 0.331812228 0.062973356 0.013386918 0.069138420
##  [37] 0.869891526 0.062973356 0.880797078 0.475020813 0.109096821 0.197816111
##  [43] 0.377540669 0.425557483 0.047425873 0.731058579 0.052153563 0.017986210
##  [49] 0.075858180 0.083172696 0.024127021 0.130108474 0.039165723 0.099750489
##  [55] 0.450166003 0.622459331 0.989013057 0.731058579 0.182425524 0.021881271
##  [61] 0.167981615 0.598687660 0.268941421 0.032295465 0.975872979 0.689974481
##  [67] 0.062973356 0.668187772 0.039165723 0.524979187 0.524979187 0.039165723
##  [73] 0.450166003 0.197816111 0.141851065 0.450166003 0.475020813 0.289050497
##  [79] 0.141851065 0.978118729 0.017986210 0.354343694 0.075858180 0.091122961
##  [85] 0.012128435 0.549833997 0.937026644 0.167981615 0.983697501 0.249739894
##  [91] 0.817574476 0.450166003 0.119202922 0.817574476 0.062973356 0.817574476
##  [97] 0.377540669 0.425557483 0.731058579 0.289050497 0.052153563 0.524979187
## [103] 0.401312340 0.689974481 0.043107255 0.500000000 0.109096821 0.880797078
## [109] 0.500000000 0.014774032 0.845534735 0.109096821 0.450166003 0.091122961
## [115] 0.014774032 0.377540669 0.331812228 0.008162571 0.009951802 0.952574127
## [121] 0.985225968 0.130108474 0.091122961 0.214165017 0.268941421 0.401312340
## [127] 0.167981615 0.960834277 0.710949503 0.069138420 0.154465265 0.750260106
## [133] 0.109096821 0.425557483 0.029312231 0.029312231 0.310025519 0.268941421
## [139] 0.645656306 0.964428811 0.310025519 0.598687660 0.032295465 0.645656306
## [145] 0.401312340 0.047425873 0.425557483 0.069138420 0.182425524 0.710949503
## [151] 0.099750489 0.768524783 0.167981615 0.029312231 0.083172696 0.310025519
## [157] 0.268941421 0.475020813 0.845534735 0.029312231 0.167981615 0.032295465
## [163] 0.425557483 0.832018385 0.091122961 0.986613082 0.524979187 0.924141820
## [169] 0.942675824 0.062973356 0.845534735 0.130108474 0.785834983 0.091122961
## [175] 0.268941421 0.731058579 0.331812228 0.832018385 0.622459331 0.401312340
## [181] 0.985225968 0.029312231 0.982013790 0.043107255 0.091122961 0.978118729
## [187] 0.785834983 0.062973356 0.006692851 0.622459331 0.182425524 0.043107255
## [193] 0.004966802 0.900249511 0.182425524 0.057324176 0.052153563 0.924141820
## [199] 0.130108474 0.960834277 0.021881271 0.004966802 0.880797078 0.083172696
## [205] 0.039165723 0.214165017 0.331812228 0.710949503 0.167981615 0.973403006
## [211] 0.982013790 0.021881271 0.016302499 0.750260106 0.035571189 0.401312340
## [217] 0.401312340 0.964428811 0.989013057 0.645656306 0.331812228 0.231475217
## [223] 0.026596994 0.197816111 0.013386918 0.574442517 0.069138420 0.039165723
## [229] 0.268941421 0.016302499 0.099750489 0.197816111 0.549833997 0.930861580
## [235] 0.880797078 0.668187772 0.043107255 0.154465265 0.978118729 0.401312340
## [241] 0.289050497 0.622459331 0.598687660 0.475020813 0.047425873 0.731058579
## [247] 0.689974481 0.039165723 0.008162571 0.083172696 0.425557483 0.983697501
## [253] 0.668187772 0.130108474 0.942675824 0.331812228 0.075858180 0.231475217
## [259] 0.942675824 0.099750489 0.091122961 0.475020813 0.019840306 0.645656306
## [265] 0.942675824 0.331812228 0.331812228 0.109096821 0.785834983 0.047425873
## [271] 0.035571189 0.057324176 0.289050497 0.622459331 0.109096821 0.197816111
## [277] 0.952574127 0.029312231 0.017986210 0.377540669 0.167981615 0.249739894
## [283] 0.130108474 0.802183889 0.731058579 0.500000000 0.249739894 0.598687660
## [289] 0.310025519 0.310025519 0.710949503 0.668187772 0.982013790 0.016302499
## [295] 0.710949503 0.450166003 0.167981615 0.598687660 0.500000000 0.401312340
## [301] 0.009951802 0.331812228 0.956892745 0.197816111 0.099750489 0.075858180
## [307] 0.062973356 0.010986943 0.075858180 0.008162571 0.182425524 0.785834983
## [313] 0.890903179 0.197816111 0.377540669 0.083172696 0.916827304 0.310025519
## [319] 0.099750489 0.524979187 0.099750489 0.937026644 0.154465265 0.249739894
## [325] 0.141851065 0.006059801 0.268941421 0.377540669 0.075858180 0.167981615
## [331] 0.475020813 0.500000000 0.622459331 0.083172696 0.622459331 0.598687660
## [337] 0.167981615 0.119202922 0.099750489 0.947846437 0.052153563 0.817574476
## [343] 0.425557483 0.989013057 0.029312231 0.947846437 0.916827304 0.083172696
## [349] 0.099750489 0.231475217 0.130108474 0.450166003 0.091122961 0.062973356
## [355] 0.268941421 0.450166003 0.982013790 0.091122961 0.377540669 0.154465265
## [361] 0.331812228 0.731058579 0.689974481 0.645656306 0.024127021 0.524979187
## [367] 0.750260106 0.574442517 0.017986210 0.083172696 0.524979187 0.289050497
## [373] 0.021881271 0.069138420 0.937026644 0.008162571 0.645656306 0.069138420
## [379] 0.785834983 0.768524783 0.832018385 0.047425873 0.069138420 0.002731961
## [385] 0.574442517 0.021881271 0.524979187 0.354343694 0.858148935 0.978118729
## [391] 0.500000000 0.768524783 0.980159694 0.167981615 0.043107255 0.119202922
## [397] 0.475020813 0.689974481 0.019840306 0.268941421
set.seed(123456)
y <- rbinom(n,1,p)
y
##   [1] 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0
##  [38] 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0
##  [75] 0 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0 1
## [112] 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0
## [149] 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 0
## [186] 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1
## [223] 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1
## [260] 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1
## [297] 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
## [334] 0 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 0 0
## [371] 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0
datagab <- data.frame(y,x1,x2,x3,x4)
datagab
##     y x1 x2 x3  x4
## 1   0  1  2  0  96
## 2   1  0  1  0  75
## 3   0  1  2  0  77
## 4   0  1  2  0  88
## 5   0  2  0  0  90
## 6   0  1  0  1  88
## 7   0  1  1  1  87
## 8   0  2  0  0  87
## 9   0  2  0  1  85
## 10  1  0  1  0  91
## 11  0  2  0  0  89
## 12  0  1  0  0  79
## 13  0  0  2  0  77
## 14  0  2  0  0  85
## 15  1  1  1  0  91
## 16  1  1  1  1  82
## 17  0  2  0  1  83
## 18  0  1  1  1  93
## 19  0  2  1  1  81
## 20  0  2  1  0  81
## 21  0  1  2  0  78
## 22  0  2  1  1  83
## 23  0  1  1  0 100
## 24  0  1  1  0  89
## 25  0  1  1  0  86
## 26  0  2  1  0  89
## 27  1  1  1  1  82
## 28  0  2  2  0  89
## 29  1  1  1  1  85
## 30  1  1  2  1  85
## 31  1  1  2  1  86
## 32  1  0  2  1  88
## 33  0  2  3  0  88
## 34  0  1  0  1  83
## 35  0  1  0  0  77
## 36  0  2  2  0  84
## 37  0  1  3  0  94
## 38  0  1  1  0  78
## 39  1  1  3  1  85
## 40  1  0  1  0  84
## 41  0  2  2  0  89
## 42  0  0  1  0  71
## 43  1  1  2  0  85
## 44  0  0  1  0  82
## 45  0  2  1  1  85
## 46  1  0  1  1  85
## 47  0  2  1  1  86
## 48  0  2  1  0  85
## 49  0  1  1  0  80
## 50  0  1  1  0  81
## 51  0  1  0  0  83
## 52  0  1  0  1  91
## 53  0  2  1  1  83
## 54  0  2  2  0  88
## 55  1  2  3  1  83
## 56  0  1  2  1  85
## 57  1  0  3  1  90
## 58  0  0  1  0  95
## 59  0  2  2  1  85
## 60  0  1  0  0  82
## 61  0  1  1  0  89
## 62  1  0  1  0  89
## 63  0  2  3  0  85
## 64  0  2  1  1  81
## 65  1  0  3  0  92
## 66  1  1  3  0  83
## 67  0  0  0  0  73
## 68  1  1  2  1  87
## 69  0  2  2  0  78
## 70  1  2  3  1  86
## 71  1  1  2  1  81
## 72  0  1  0  0  88
## 73  1  1  2  0  88
## 74  0  1  1  0  91
## 75  0  2  2  0  92
## 76  0  1  2  0  88
## 77  1  1  1  1  94
## 78  0  1  0  1 101
## 79  0  1  1  0  87
## 80  1  0  3  1  83
## 81  0  2  1  0  85
## 82  0  1  2  0  84
## 83  0  1  1  0  80
## 84  1  2  1  1  92
## 85  0  2  1  0  81
## 86  1  0  1  0  87
## 87  1  0  3  0  82
## 88  0  2  2  1  84
## 89  1  0  3  1  86
## 90  0  2  3  0  84
## 91  1  0  1  1  90
## 92  0  0  1  0  83
## 93  0  1  1  0  85
## 94  1  1  2  1  95
## 95  0  1  1  0  78
## 96  1  0  1  1  90
## 97  1  2  3  1  80
## 98  1  1  2  0  87
## 99  1  0  1  1  85
## 100 0  1  1  1  86
## 101 0  1  0  0  91
## 102 0  1  2  0  91
## 103 0  1  2  0  86
## 104 1  1  3  0  83
## 105 0  1  0  0  89
## 106 1  1  2  0  90
## 107 1  1  0  1  89
## 108 1  0  2  1  80
## 109 1  2  3  0  95
## 110 0  2  0  1  88
## 111 1  1  3  1  82
## 112 0  1  1  0  84
## 113 0  1  2  0  88
## 114 0  1  1  0  82
## 115 0  2  0  1  88
## 116 0  1  2  0  85
## 117 0  1  1  1  88
## 118 0  2  1  0  77
## 119 0  2  0  1  84
## 120 0  0  2  1  90
## 121 1  0  3  1  87
## 122 0  1  0  1  91
## 123 0  2  1  1  92
## 124 1  1  1  1  82
## 125 0  0  0  0  90
## 126 0  1  1  1  91
## 127 0  2  2  0  94
## 128 1  0  3  0  87
## 129 0  1  3  0  84
## 130 0  1  1  0  79
## 131 0  1  1  1  78
## 132 1  0  1  1  86
## 133 0  1  1  0  84
## 134 1  0  0  1  87
## 135 0  2  2  0  75
## 136 0  2  1  1  80
## 137 0  1  1  0  97
## 138 1  1  1  1  85
## 139 1  1  3  0  81
## 140 1  0  2  1  93
## 141 1  1  2  1  72
## 142 0  1  3  0  79
## 143 0  1  0  0  86
## 144 0  2  3  1  91
## 145 0  0  0  1  86
## 146 0  1  0  0  90
## 147 1  1  2  0  87
## 148 0  2  2  0  84
## 149 0  2  2  1  85
## 150 1  1  3  0  84
## 151 0  1  1  0  83
## 152 1  0  1  1  87
## 153 0  1  1  0  89
## 154 0  2  1  1  80
## 155 0  1  1  0  81
## 156 0  2  2  1  92
## 157 0  0  0  1  80
## 158 1  1  2  1  79
## 159 1  1  3  1  82
## 160 0  2  1  0  90
## 161 1  2  2  0  94
## 162 0  2  1  1  81
## 163 0  1  2  0  87
## 164 1  1  3  1  81
## 165 0  1  0  1  87
## 166 1  0  3  1  88
## 167 0  0  0  1  91
## 168 1  0  2  1  85
## 169 1  0  2  1  88
## 170 0  2  1  1  88
## 171 1  0  2  0  87
## 172 0  1  1  0  86
## 173 0  0  1  1  88
## 174 0  1  1  0  82
## 175 0  0  1  0  75
## 176 0  0  2  0  80
## 177 1  1  2  0  83
## 178 1  0  2  0  86
## 179 1  1  2  1  85
## 180 0  1  1  1  91
## 181 1  0  3  1  87
## 182 0  1  0  0  85
## 183 1  0  3  1  85
## 184 0  2  1  1  84
## 185 0  1  1  0  82
## 186 1  0  3  0  93
## 187 1  1  2  1  93
## 188 0  1  1  0  78
## 189 0  2  1  0  75
## 190 1  2  3  1  90
## 191 0  1  1  0  90
## 192 0  2  2  0  79
## 193 0  2  0  0  87
## 194 1  0  2  1  82
## 195 1  1  1  0  90
## 196 0  1  1  0  77
## 197 0  2  2  0  81
## 198 0  1  3  1  90
## 199 0  1  1  0  86
## 200 1  0  3  0  87
## 201 0  2  1  0  87
## 202 0  2  0  0  87
## 203 1  1  3  1  85
## 204 0  1  0  1  86
## 205 0  1  0  0  88
## 206 0  0  0  0  87
## 207 1  1  2  0  83
## 208 1  1  2  1  89
## 209 0  1  1  0  89
## 210 1  0  2  1  96
## 211 1  0  3  0  95
## 212 0  2  1  0  87
## 213 0  2  1  0  84
## 214 0  1  3  0  86
## 215 0  2  1  1  82
## 216 1  1  2  1  76
## 217 0  0  1  0  81
## 218 1  0  3  1  78
## 219 1  0  3  1  90
## 220 1  1  2  1  86
## 221 0  1  1  1  88
## 222 1  1  1  0  93
## 223 0  2  1  1  79
## 224 0  1  1  1  81
## 225 0  2  0  0  97
## 226 0  1  2  1  83
## 227 0  1  1  0  79
## 228 0  1  0  1  78
## 229 0  1  2  0  80
## 230 0  2  1  0  84
## 231 0  1  1  0  83
## 232 0  2  2  1  86
## 233 1  0  1  0  87
## 234 1  0  2  1  86
## 235 1  1  3  1  85
## 236 1  1  2  1  87
## 237 0  2  1  0  94
## 238 0  1  1  1  78
## 239 1  0  3  1  83
## 240 0  1  2  0  86
## 241 1  1  1  1  86
## 242 1  1  2  1  85
## 243 1  0  2  0  74
## 244 0  1  2  0  89
## 245 0  2  2  0  80
## 246 1  0  1  1  85
## 247 1  1  2  1  88
## 248 0  1  1  0  73
## 249 0  2  1  0  77
## 250 1  1  1  0  81
## 251 1  2  3  0  92
## 252 1  0  3  1  86
## 253 1  0  1  1  82
## 254 0  1  1  0  86
## 255 1  1  3  1  93
## 256 0  1  2  0  83
## 257 0  1  1  0  80
## 258 1  2  2  1  88
## 259 1  0  3  0  83
## 260 0  2  2  0  88
## 261 0  2  2  0  87
## 262 1  0  1  0  84
## 263 0  1  0  0  81
## 264 0  0  1  1  81
## 265 1  0  3  0  83
## 266 1  0  1  0  78
## 267 1  0  0  1  83
## 268 0  1  1  0  84
## 269 1  1  2  0 103
## 270 0  2  1  1  85
## 271 0  2  0  1  97
## 272 0  2  1  1  87
## 273 0  1  1  1  86
## 274 1  1  3  0  80
## 275 1  1  0  1  89
## 276 1  2  2  1  86
## 277 1  0  3  0  85
## 278 0  2  1  0  90
## 279 0  2  1  0  85
## 280 1  1  2  0  85
## 281 1  2  3  0  79
## 282 1  1  1  1  84
## 283 0  2  2  1  81
## 284 1  0  2  0  84
## 285 1  0  1  1  85
## 286 0  0  1  0  85
## 287 1  1  1  1  84
## 288 1  0  1  0  89
## 289 1  0  0  1  82
## 290 1  1  1  1  87
## 291 1  1  2  1  89
## 292 1  0  1  1  82
## 293 1  0  3  1  85
## 294 0  1  0  0  79
## 295 1  1  2  1  89
## 296 1  2  3  1  83
## 297 0  1  1  0  89
## 298 1  1  3  0  79
## 299 1  2  3  1  85
## 300 0  0  0  1  86
## 301 0  2  1  0  79
## 302 0  1  2  0  83
## 303 1  0  2  1  91
## 304 0  0  0  0  86
## 305 0  2  2  0  88
## 306 0  2  2  0  85
## 307 0  2  1  1  88
## 308 0  2  0  0  95
## 309 0  1  1  0  80
## 310 0  2  1  0  77
## 311 1  1  1  0  90
## 312 1  1  3  1  78
## 313 1  0  2  1  81
## 314 1  2  2  1  86
## 315 1  0  0  1  85
## 316 0  1  1  0  81
## 317 1  0  3  0  79
## 318 0  1  2  0  82
## 319 0  2  2  0  88
## 320 0  1  2  1  81
## 321 0  1  1  0  83
## 322 1  0  2  1  87
## 323 0  1  1  0  88
## 324 1  1  1  1  84
## 325 0  0  0  0  82
## 326 0  2  0  0  89
## 327 0  0  1  0  75
## 328 0  0  0  1  85
## 329 0  2  2  0  85
## 330 0  1  1  0  89
## 331 0  0  1  0  84
## 332 1  1  2  0  90
## 333 1  1  2  1  85
## 334 0  1  1  0  81
## 335 0  0  1  0  90
## 336 1  0  1  1  79
## 337 0  1  1  0  89
## 338 0  2  2  1  80
## 339 0  1  1  0  83
## 340 1  0  3  0  84
## 341 0  2  1  1  86
## 342 0  0  2  0  85
## 343 1  1  2  0  87
## 344 1  0  3  1  90
## 345 0  1  0  0  85
## 346 1  0  2  1  89
## 347 1  0  2  1  84
## 348 0  1  0  1  86
## 349 0  2  2  1  78
## 350 0  0  1  0  73
## 351 0  1  1  1  76
## 352 0  0  1  0  83
## 353 0  1  1  0  82
## 354 0  1  1  0  78
## 355 0  1  1  0  95
## 356 0  1  2  1  78
## 357 1  0  3  0  95
## 358 0  1  1  0  82
## 359 1  0  0  1  85
## 360 0  1  1  1  78
## 361 0  0  0  1  83
## 362 1  1  2  1  90
## 363 1  1  2  1  88
## 364 1  1  2  1  86
## 365 0  1  0  0  83
## 366 1  1  2  0  91
## 367 1  0  1  1  86
## 368 0  0  1  0  88
## 369 0  2  1  0  85
## 370 0  1  1  0  81
## 371 0  0  1  0  86
## 372 1  0  0  1  81
## 373 0  1  0  0  82
## 374 0  1  0  0  94
## 375 1  1  3  1  92
## 376 0  1  0  0  72
## 377 1  1  3  0  81
## 378 0  1  0  1  84
## 379 1  1  3  0  88
## 380 1  0  1  1  87
## 381 1  0  2  0  86
## 382 0  2  1  0  95
## 383 0  1  0  0  94
## 384 0  2  0  0  81
## 385 0  1  2  1  83
## 386 0  1  0  0  82
## 387 0  0  1  1  76
## 388 0  1  1  1  89
## 389 1  1  3  0  93
## 390 1  0  3  1  83
## 391 1  1  2  1  80
## 392 1  0  2  0  82
## 393 1  0  2  1  99
## 394 0  2  2  1  84
## 395 0  2  1  1  84
## 396 0  1  1  0  85
## 397 0  0  0  1  89
## 398 1  1  3  0  83
## 399 0  2  1  0  86
## 400 0  1  1  1  85

Analisis Regresi Logistik

modelreglog <- glm(y~x1+x2+x3+x4, family = binomial(link = "logit"), data=datagab)
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -9.70569    2.63647  -3.681 0.000232 ***
## x1          -2.04777    0.26219  -7.810 5.70e-15 ***
## x2           1.84579    0.21069   8.761  < 2e-16 ***
## x3           1.99962    0.31949   6.259 3.88e-10 ***
## x4           0.08771    0.03028   2.897 0.003767 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 537.59  on 399  degrees of freedom
## Residual deviance: 294.65  on 395  degrees of freedom
## AIC: 304.65
## 
## Number of Fisher Scoring iterations: 6

Kesimpulan

Pada skenario di atas, status kelulusan pendaftar terbanyak yaitu pendaftar dengan lulusan satu tahun lalu(gap 1 tahun); pendidikan terakhir terbanyak adalah lulusan SMA; rata-rata nilai rapor pendaftar lebih banyak yang di atas 70; dan nilai seleksi mandiri terbanyak yaitu pada rentang 80-90.

Data X1, X2, X3, dan X4, merupakan variabel yang mewakili status kelulusan, pendidikan terakhir, rata-rata nilai rapor, dan nilai seleksi mandiri dari calon mahasiswa baru telah berhasil dibangkitkan sesuai skenario.

Probabilitas telah dihitung menggunakan model regresi logistik. Data variabel Y (keputusan menerima/menolak) berhasil di bangkitkan berdasarkan probabilitas yang dihasilkan.

Model regresi logistik telah diestimasi menggunakan data yang telah dibangkitkan. Summary dari model regresi logistik telah memberikan informasi mengenai koefisien-koefisien yang diestimasi, nilai deviance, serta uji signifikansi masing-masing koefisien.

Dengan demikian, dokumen ini memberikan gambaran tentang bagaimana proses pembangkitan data dan analisis regresi logistik dapat dilakukan dalam konteks penerimaan calon mahasiswa baru menggunakan jalus seleksi mandiri tes.