Membangkitkan Data APK Purchasing Supplier

skenario

Skenario ini mengambil sampel 1 sekolah (SMA) kelas 12 yang mengikuti utbk tahun 2024 Y :Keputusan menolak/menerima mahasiswa baru pada universitas UNNES X1 :Lama pengalaman belajar (bulan) X2 :Status siswa saat ini (0: IPA, 1: IPS) X3 :Pilihan kelompok studi (0: saintek, 1: soshum) X4 :Skor UTBK (skala 1000)

Membangkitkan Data UTBK 2024 X1

X1 :Lama pengalaman belajar (bulan) Membangkitkan variabel X1 dengan lama belajar 0-12 bulan dengan nilai tengah 6 dan banyak siswa pendaftar UTBK adalah 120

set.seed(11)
n <- 120
u <- runif(n)

X1 <- round(12*(-(log(1-u)/6)))
X1
##   [1] 1 0 1 0 0 6 0 1 4 0 0 1 5 4 3 2 1 1 0 1 0 2 1 1 0 1 1 0 0 1 1 1 1 0 3 2 1
##  [38] 0 1 0 1 0 1 2 1 4 2 0 2 4 1 2 1 1 1 1 1 3 0 2 0 3 0 2 3 0 0 1 0 2 2 1 1 0
##  [75] 6 2 1 1 1 0 0 1 1 1 3 1 0 2 3 1 1 3 0 1 3 1 3 0 2 1 3 2 1 1 0 1 2 3 2 0 2
## [112] 0 1 3 2 1 5 1 1 1

Membangkitkan Data UTBK 2024 X2

X2 :Status siswa saat ini Keterangan yang diperlukan (0= IPA) dan (1= IPS)

set.seed(1)
X2 <- round(runif(n))
X2
##   [1] 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1
##  [38] 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0
##  [75] 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1
## [112] 1 0 0 0 0 1 0 0 1

Membangkitkan Data UTBK 2024 X3

X3 :Pilihan kelompok studi Keterangan yang digunakan (0: saintek) dan (1: soshum)

set.seed(10)
X3 <- round(runif(n))
X3
##   [1] 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 1
##  [38] 1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1
##  [75] 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0 1
## [112] 1 0 1 1 1 0 1 1 1

Membangkitkan Data UTBK 2024 X4

X4 adalah data skor UTBK (skala 1000)

set.seed(12)
X4 <- sample(1:1000,120,replace = TRUE)
X4
##   [1] 450 346 336 247 859 174 453  69 476 546 136  91  82 381 978 121 294 620
##  [19] 618 218 999 432 269 440 964 152 313  72 127 890 427 174 509 103 542 236
##  [37] 421 633  34 679 974 583 666  32  84 404 960 787 596 260 141 973 624 347
##  [55] 165 727 764  48 751 839 795 589 852 219 104 133 723 914  85 764 951 570
##  [73] 216  13 416 936  88 201 692 184 949 551 796 552 187 253 527 104 903 526
##  [91] 464 842 706 140 810 936 933 848 133  75 278 579 628 510 396 901 204 579
## [109] 133 342  42 528 699 678 914 194 104 595 778 306

Membangkitkan Data Y

Menentukan Koefesien

b0 <- -12
b1 <- 3.5
b2 <-5.7
b3 <-2.2
b4 <- 1.4
set.seed(11)
datapendukung <- b0+(b1*X1)+(b2*X2)+(b3*X3)+(b4*X4)
datapendukung
##   [1]  623.7  472.4  467.6  341.7 1190.6  258.3  627.9   93.8  676.3  752.4
##  [11]  180.6  121.1  126.0  537.6 1373.4  164.4  408.8  865.2  853.2  304.6
##  [21] 1394.5  602.0  376.0  607.5 1337.6  206.5  431.9   88.8  173.7 1237.5
##  [31]  591.5  240.8  704.1  134.4  763.0  333.3  588.8  876.4   47.0  940.8
##  [41] 1360.8  809.9  929.6   47.7  114.8  573.3 1339.0 1089.8  835.1  373.9
##  [51]  188.9 1365.1  865.1  477.3  222.5 1011.5 1061.1   71.4 1045.1 1171.8
##  [61] 1106.7  823.1 1180.8  301.6  152.0  176.4 1002.4 1276.8  107.0 1070.3
##  [71] 1326.4  797.4  296.1    8.4  591.4 1313.3  120.4  275.1  966.0  251.3
##  [81] 1318.8  768.6 1105.9  766.5  266.0  345.7  733.7  140.6 1262.7  727.9
##  [91]  641.1 1179.5  984.3  195.4 1138.2 1309.8 1304.7 1177.4  189.1  102.2
## [101]  393.4  805.6  870.7  711.2  550.3 1255.1  282.8  809.1  189.1  472.5
## [111]   61.7  735.1  970.1  949.9 1276.8  265.3  156.8  826.7 1082.9  427.8
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 1.0000000 1.0000000 1.0000000 1.0000000       NaN 1.0000000 1.0000000
##   [8] 1.0000000 1.0000000       NaN 1.0000000 1.0000000 1.0000000 1.0000000
##  [15]       NaN 1.0000000 1.0000000       NaN       NaN 1.0000000       NaN
##  [22] 1.0000000 1.0000000 1.0000000       NaN 1.0000000 1.0000000 1.0000000
##  [29] 1.0000000       NaN 1.0000000 1.0000000 1.0000000 1.0000000       NaN
##  [36] 1.0000000 1.0000000       NaN 1.0000000       NaN       NaN       NaN
##  [43]       NaN 1.0000000 1.0000000 1.0000000       NaN       NaN       NaN
##  [50] 1.0000000 1.0000000       NaN       NaN 1.0000000 1.0000000       NaN
##  [57]       NaN 1.0000000       NaN       NaN       NaN       NaN       NaN
##  [64] 1.0000000 1.0000000 1.0000000       NaN       NaN 1.0000000       NaN
##  [71]       NaN       NaN 1.0000000 0.9997752 1.0000000       NaN 1.0000000
##  [78] 1.0000000       NaN 1.0000000       NaN       NaN       NaN       NaN
##  [85] 1.0000000 1.0000000       NaN 1.0000000       NaN       NaN 1.0000000
##  [92]       NaN       NaN 1.0000000       NaN       NaN       NaN       NaN
##  [99] 1.0000000 1.0000000 1.0000000       NaN       NaN       NaN 1.0000000
## [106]       NaN 1.0000000       NaN 1.0000000 1.0000000 1.0000000       NaN
## [113]       NaN       NaN       NaN 1.0000000 1.0000000       NaN       NaN
## [120] 1.0000000
set.seed(2)
Y <- rbinom(n,1,p)
## Warning in rbinom(n, 1, p): NAs produced
Y
##   [1]  1  1  1  1 NA  1  1  1  1 NA  1  1  1  1 NA  1  1 NA NA  1 NA  1  1  1 NA
##  [26]  1  1  1  1 NA  1  1  1  1 NA  1  1 NA  1 NA NA NA NA  1  1  1 NA NA NA  1
##  [51]  1 NA NA  1  1 NA NA  1 NA NA NA NA NA  1  1  1 NA NA  1 NA NA NA  1  1  1
##  [76] NA  1  1 NA  1 NA NA NA NA  1  1 NA  1 NA NA  1 NA NA  1 NA NA NA NA  1  1
## [101]  1 NA NA NA  1 NA  1 NA  1  1  1 NA NA NA NA  1  1 NA NA  1
datagab <- data.frame(Y,X1,X2,X3,X4)
datagab
##      Y X1 X2 X3  X4
## 1    1  1  0  1 450
## 2    1  0  0  0 346
## 3    1  1  1  0 336
## 4    1  0  1  1 247
## 5   NA  0  0  0 859
## 6    1  6  1  0 174
## 7    1  0  1  0 453
## 8    1  1  1  0  69
## 9    1  4  1  1 476
## 10  NA  0  0  0 546
## 11   1  0  0  1 136
## 12   1  1  0  1  91
## 13   1  5  1  0  82
## 14   1  4  0  1 381
## 15  NA  3  1  0 978
## 16   1  2  0  0 121
## 17   1  1  1  0 294
## 18  NA  1  1  0 620
## 19  NA  0  0  0 618
## 20   1  1  1  1 218
## 21  NA  0  1  1 999
## 22   1  2  0  1 432
## 23   1  1  1  1 269
## 24   1  1  0  0 440
## 25  NA  0  0  0 964
## 26   1  1  0  1 152
## 27   1  1  0  1 313
## 28   1  0  0  0  72
## 29   1  0  1  1 127
## 30  NA  1  0  0 890
## 31   1  1  0  1 427
## 32   1  1  1  0 174
## 33   1  1  0  0 509
## 34   1  0  0  1 103
## 35  NA  3  1  0 542
## 36   1  2  1  1 236
## 37   1  1  1  1 421
## 38  NA  0  0  1 633
## 39   1  1  1  1  34
## 40  NA  0  0  1 679
## 41  NA  1  1  0 974
## 42  NA  0  1  0 583
## 43  NA  1  1  0 666
## 44   1  2  1  1  32
## 45   1  1  1  0  84
## 46   1  4  1  0 404
## 47  NA  2  0  0 960
## 48  NA  0  0  0 787
## 49  NA  2  1  0 596
## 50   1  4  1  1 260
## 51   1  1  0  0 141
## 52  NA  2  1  1 973
## 53  NA  1  0  0 624
## 54   1  1  0  0 347
## 55   1  1  0  0 165
## 56  NA  1  0  1 727
## 57  NA  1  0  0 764
## 58   1  3  1  0  48
## 59  NA  0  1  0 751
## 60  NA  2  0  1 839
## 61  NA  0  1  0 795
## 62  NA  3  0  0 589
## 63  NA  0  0  0 852
## 64   1  2  0  0 219
## 65   1  3  1  1 104
## 66   1  0  0  1 133
## 67  NA  0  0  1 723
## 68  NA  1  1  0 914
## 69   1  0  0  0  85
## 70  NA  2  1  0 764
## 71  NA  2  0  0 951
## 72  NA  1  1  1 570
## 73   1  1  0  1 216
## 74   1  0  0  1  13
## 75   1  6  0  0 416
## 76  NA  2  1  1 936
## 77   1  1  1  0  88
## 78   1  1  0  1 201
## 79  NA  1  1  0 692
## 80   1  0  1  0 184
## 81  NA  0  0  1 949
## 82  NA  1  1  0 551
## 83  NA  1  0  0 796
## 84  NA  1  0  1 552
## 85   1  3  1  0 187
## 86   1  1  0  0 253
## 87  NA  0  1  1 527
## 88   1  2  0  0 104
## 89  NA  3  0  0 903
## 90  NA  1  0  0 526
## 91   1  1  0  0 464
## 92  NA  3  0  1 842
## 93  NA  0  1  1 706
## 94   1  1  1  1 140
## 95  NA  3  1  0 810
## 96  NA  1  1  1 936
## 97  NA  3  0  0 933
## 98  NA  0  0  1 848
## 99   1  2  1  1 133
## 100  1  1  1  0  75
## 101  1  3  1  0 278
## 102 NA  2  0  0 579
## 103 NA  1  0  0 628
## 104 NA  1  1  0 510
## 105  1  0  1  1 396
## 106 NA  1  0  1 901
## 107  1  2  0  1 204
## 108 NA  3  0  0 579
## 109  1  2  1  1 133
## 110  1  0  1  0 342
## 111  1  2  1  1  42
## 112 NA  0  1  1 528
## 113 NA  1  0  0 699
## 114 NA  3  0  1 678
## 115 NA  2  0  1 914
## 116  1  1  0  1 194
## 117  1  5  1  0 104
## 118 NA  1  0  1 595
## 119 NA  1  0  1 778
## 120  1  1  1  1 306

Analisis Regresi Logistik

modelreglog <- glm(Y~X1+X2+X3+X4, family=binomial(link = "logit"), data=datagab)
summary(modelreglog)
## 
## Call:
## glm(formula = Y ~ X1 + X2 + X3 + X4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)  2.657e+01  1.221e+05       0        1
## X1          -1.063e-06  3.156e+04       0        1
## X2          -1.513e-07  9.356e+04       0        1
## X3           3.268e-07  9.074e+04       0        1
## X4          -8.843e-10  3.342e+02       0        1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 0.000e+00  on 62  degrees of freedom
## Residual deviance: 3.655e-10  on 58  degrees of freedom
##   (57 observations deleted due to missingness)
## AIC: 10
## 
## Number of Fisher Scoring iterations: 25

KESIMPULAN Simulasi ini menunjukkan bagaimana data UTBK 2024 dapat dibangkitkan dan dianalisis menggunakan regresi logistik. Hasil analisis regresi logistik menunjukkan pengaruh variabel X1, X2, X3, dan X4 terhadap peluang diterima di UNNES.