Membangkitkan Data

Rancangan Data

Y : Keputusan Kenaikan Gaji Karyawan PT ADE X1 : Lama bekerja (Tahun.Hari) X2 : Persetujuan dari atasan (0 = Disetujui ; 1 = Tidak disetujui) X3 : Besaran Kenaikan Gaji + THR (Rupiah)

Membangkitkan Data x1

X1 : Lama bekerja (Tahun.Hari)

set.seed(1)
n <- 100 
x1 <- round(rnorm(n,3,0.5),2)
x1
##   [1] 2.69 3.09 2.58 3.80 3.16 2.59 3.24 3.37 3.29 2.85 3.76 3.19 2.69 1.89 3.56
##  [16] 2.98 2.99 3.47 3.41 3.30 3.46 3.39 3.04 2.01 3.31 2.97 2.92 2.26 2.76 3.21
##  [31] 3.68 2.95 3.19 2.97 2.31 2.79 2.80 2.97 3.55 3.38 2.92 2.87 3.35 3.28 2.66
##  [46] 2.65 3.18 3.38 2.94 3.44 3.20 2.69 3.17 2.44 3.72 3.99 2.82 2.48 3.28 2.93
##  [61] 4.20 2.98 3.34 3.01 2.63 3.09 2.10 3.73 3.08 4.09 3.24 2.65 3.31 2.53 2.37
##  [76] 3.15 2.78 3.00 3.04 2.71 2.72 2.93 3.59 2.24 3.30 3.17 3.53 2.85 3.19 3.13
##  [91] 2.73 3.60 3.58 3.35 3.79 3.28 2.36 2.71 2.39 2.76

Membangkitkan data X2

X2: Persetujuan dari atasan Keterangan yang digunakan (0 = Disetujui ; 1 = Tidak disetujui)

set.seed(2)
x2 <- round(runif(n))
x2
##   [1] 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1
##  [38] 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
##  [75] 0 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0

Membangkitkan data X3

X3 : Besaran Kenaikan Gaji + THR (Rupiah) Keterangan yang digunakan (Juta)

set.seed(3)
x3 <- runif(100, 10, 25)
x3
##   [1] 12.52062 22.11275 15.77414 14.91601 19.03151 19.06591 11.86950 14.41901
##   [9] 18.66415 19.46469 17.68024 17.57536 18.01053 18.35874 23.01879 22.44563
##  [17] 11.67174 20.55533 23.46232 14.19599 13.42303 10.22995 11.93472 11.40073
##  [25] 13.55328 21.86721 18.99597 23.65222 18.40637 21.33557 15.68758 15.59921
##  [33] 12.55436 16.79961 13.87621 15.04399 23.34375 13.02919 18.68779 13.11448
##  [41] 14.22203 21.79422 12.59529 18.56121 16.28924 14.01433 10.71714 11.55240
##  [49] 14.71047 22.00962 13.43987 13.19498 23.15651 24.89833 22.66371 23.65655
##  [57] 17.06905 13.36628 11.91722 14.19525 22.24159 10.86419 22.04244 11.56582
##  [65] 21.49909 14.57216 21.53931 18.10984 15.43556 11.38835 21.39633 21.41230
##  [73] 23.54891 24.49424 17.72885 18.24221 12.45580 12.46895 21.79499 21.26670
##  [81] 21.76322 19.81532 15.67157 10.12850 24.32994 22.57924 13.20137 17.42070
##  [89] 19.54366 23.81637 10.17616 14.01104 16.53358 22.44201 23.06416 13.76603
##  [97] 14.86537 14.59357 12.76423 20.19966

Membangkitkan data Y

b0 <- -10
b1 <- 3.5
b2 <- 2.5
b3 <- 1.5
set.seed(1)
datapendukung <- b0+(b1*x1)+(b2*x2)+(b3*x3)
datapendukung
##   [1] 18.19593 36.48412 25.19120 25.67402 32.10727 30.16387 19.14425 25.92352
##   [9] 29.51122 31.67203 32.18036 27.52804 28.93080 24.15311 36.98819 36.59845
##  [17] 20.47261 32.97799 37.12849 22.84398 24.74454 17.20992 21.04209 14.13609
##  [25] 21.91491 33.19582 28.71396 33.38832 29.76955 33.23836 26.41137 23.72382
##  [33] 22.49654 28.09441 21.39931 24.83098 37.31562 19.93879 32.95669 21.50172
##  [41] 24.05305 32.73633 20.61794 29.32182 26.24387 22.79650 19.70571 19.15859
##  [49] 24.85571 37.55442 21.35981 19.20746 38.32977 38.38749 37.01556 41.94982
##  [57] 27.97357 21.22941 21.85583 24.04788 40.56239 19.22629 37.25366 17.88373
##  [65] 33.95364 22.67324 29.65897 30.21975 23.93334 21.39753 33.43449 31.39345
##  [73] 36.90837 35.59636 24.88827 30.88832 18.41370 21.70343 33.33249 33.88505
##  [81] 32.16483 32.47799 26.07235 13.03276 38.04491 37.46386 24.65706 26.10606
##  [89] 32.98050 36.67956 17.31924 23.61657 27.33037 37.88801 37.86124 22.12905
##  [97] 20.55806 21.37535 17.51135 29.95949
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##   [8] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [15] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [22] 1.0000000 1.0000000 0.9999993 1.0000000 1.0000000 1.0000000 1.0000000
##  [29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [36] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [43] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [50] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [64] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [71] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [78] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 0.9999978
##  [85] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [92] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
##  [99] 1.0000000 1.0000000
set.seed(2)
y <- rbinom(n,1,p)
y
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
datagab <- data.frame(y,x1,x2,x3)
datagab
##     y   x1 x2       x3
## 1   1 2.69  0 12.52062
## 2   1 3.09  1 22.11275
## 3   1 2.58  1 15.77414
## 4   1 3.80  0 14.91601
## 5   1 3.16  1 19.03151
## 6   1 2.59  1 19.06591
## 7   1 3.24  0 11.86950
## 8   1 3.37  1 14.41901
## 9   1 3.29  0 18.66415
## 10  1 2.85  1 19.46469
## 11  1 3.76  1 17.68024
## 12  1 3.19  0 17.57536
## 13  1 2.69  1 18.01053
## 14  1 1.89  0 18.35874
## 15  1 3.56  0 23.01879
## 16  1 2.98  1 22.44563
## 17  1 2.99  1 11.67174
## 18  1 3.47  0 20.55533
## 19  1 3.41  0 23.46232
## 20  1 3.30  0 14.19599
## 21  1 3.46  1 13.42303
## 22  1 3.39  0 10.22995
## 23  1 3.04  1 11.93472
## 24  1 2.01  0 11.40073
## 25  1 3.31  0 13.55328
## 26  1 2.97  0 21.86721
## 27  1 2.92  0 18.99597
## 28  1 2.26  0 23.65222
## 29  1 2.76  1 18.40637
## 30  1 3.21  0 21.33557
## 31  1 3.68  0 15.68758
## 32  1 2.95  0 15.59921
## 33  1 3.19  1 12.55436
## 34  1 2.97  1 16.79961
## 35  1 2.31  1 13.87621
## 36  1 2.79  1 15.04399
## 37  1 2.80  1 23.34375
## 38  1 2.97  0 13.02919
## 39  1 3.55  1 18.68779
## 40  1 3.38  0 13.11448
## 41  1 2.92  1 14.22203
## 42  1 2.87  0 21.79422
## 43  1 3.35  0 12.59529
## 44  1 3.28  0 18.56121
## 45  1 2.66  1 16.28924
## 46  1 2.65  1 14.01433
## 47  1 3.18  1 10.71714
## 48  1 3.38  0 11.55240
## 49  1 2.94  1 14.71047
## 50  1 3.44  1 22.00962
## 51  1 3.20  0 13.43987
## 52  1 2.69  0 13.19498
## 53  1 3.17  1 23.15651
## 54  1 2.44  1 24.89833
## 55  1 3.72  0 22.66371
## 56  1 3.99  1 23.65655
## 57  1 2.82  1 17.06905
## 58  1 2.48  1 13.36628
## 59  1 3.28  1 11.91722
## 60  1 2.93  1 14.19525
## 61  1 4.20  1 22.24159
## 62  1 2.98  1 10.86419
## 63  1 3.34  1 22.04244
## 64  1 3.01  0 11.56582
## 65  1 2.63  1 21.49909
## 66  1 3.09  0 14.57216
## 67  1 2.10  0 21.53931
## 68  1 3.73  0 18.10984
## 69  1 3.08  0 15.43556
## 70  1 4.09  0 11.38835
## 71  1 3.24  0 21.39633
## 72  1 2.65  0 21.41230
## 73  1 3.31  0 23.54891
## 74  1 2.53  0 24.49424
## 75  1 2.37  0 17.72885
## 76  1 3.15  1 18.24221
## 77  1 2.78  0 12.45580
## 78  1 3.00  1 12.46895
## 79  1 3.04  0 21.79499
## 80  1 2.71  1 21.26670
## 81  1 2.72  0 21.76322
## 82  1 2.93  1 19.81532
## 83  1 3.59  0 15.67157
## 84  1 2.24  0 10.12850
## 85  1 3.30  0 24.32994
## 86  1 3.17  1 22.57924
## 87  1 3.53  1 13.20137
## 88  1 2.85  0 17.42070
## 89  1 3.19  1 19.54366
## 90  1 3.13  0 23.81637
## 91  1 2.73  1 10.17616
## 92  1 3.60  0 14.01104
## 93  1 3.58  0 16.53358
## 94  1 3.35  1 22.44201
## 95  1 3.79  0 23.06416
## 96  1 3.28  0 13.76603
## 97  1 2.36  0 14.86537
## 98  1 2.71  0 14.59357
## 99  1 2.39  0 12.76423
## 100 1 2.76  0 20.19966

Analisis Regresi Logistik

kesimpulan <- glm(y~x1+x2+x3, family = binomial(link = "logit"),data = datagab)
summary(kesimpulan)
## 
## Call:
## glm(formula = y ~ x1 + x2 + x3, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.657e+01  2.795e+05       0        1
## x1          6.474e-10  7.996e+04       0        1
## x2          1.924e-09  7.163e+04       0        1
## x3          2.833e-10  8.355e+03       0        1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 0.0000e+00  on 99  degrees of freedom
## Residual deviance: 5.8016e-10  on 96  degrees of freedom
## AIC: 8
## 
## Number of Fisher Scoring iterations: 25

Kesimpulan

=> Beberapa karyawan disetujui oleh atasan dan ada beberapa karyawan yang tidak disetujui oleh atasan untuk mendapatkan kenaikan gaji + THR tetapi dikarenakan terdapat faktor yang mendukung sehingga seluruh karyawan mendapatkan kenaikan gaji + THR