#Membangkitkan Data ## skenario Y : Keputusan rugi/untung penjualan puding sedot X1 :Lama penjualan (minggu) X2 :Diskon penjualan (bulan) X3 :Penilaian produk dari pembeli(1= nyegerin, 2= nyegerin banget, 3=biasa) X4 :Usia pembeli puding sedot (15 hingga 30 tahun)

Menjalankan data X1

X1 : Lama penjualan (minggu) membangkitkan variabel x1 dengan diskon penjualan 1-3 bulan dengan nilai tengah 2 dan banyak pembeli 150(minggu)

set.seed(150)
n<- 150
u<- runif(n)

x1 <- round(3*(-(log(1-u)/2)))
x1
##   [1] 0 1 1 3 0 1 1 1 1 3 1 4 2 1 2 5 1 0 0 1 1 0 0 0 1 2 0 2 0 1 6 2 1 0 4 2 2
##  [38] 0 0 1 1 2 4 1 2 1 1 0 7 1 3 3 4 2 0 1 5 0 1 3 3 4 0 1 1 1 3 1 1 2 1 6 3 1
##  [75] 0 3 2 1 0 6 0 1 1 1 0 0 2 0 1 0 0 0 4 1 3 1 1 2 1 0 2 2 1 0 0 1 1 0 1 3 1
## [112] 0 0 4 1 5 1 2 0 1 1 0 0 0 2 1 1 1 6 2 0 1 0 3 1 1 1 0 2 2 1 1 2 1 1 1 1 4
## [149] 2 0

##Menjalankan data ke 2 X2 :Diskon penjualan (bulan)

set.seed(1234)
x2 <- round(runif(n))
x2
##   [1] 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0
##  [38] 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1
##  [75] 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
## [112] 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1
## [149] 1 1

##Menjalankan data ke 3 X3 :Penilaian produk dari pembeli keterangan yang digunakan (1= nyegerin, 2= nyegerin banget, 3=biasa)

set.seed(123)
X3 <- round(runif(n))
X3
##   [1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1
##  [38] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0
##  [75] 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1
## [112] 0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0
## [149] 0 1

Menjalankan data ke 4

X4 :Usia pembeli puding sedot usia (15 hingga 30 tahun)

set.seed(1)
x4 <- round(rnorm(n,3, 0.3),2)
x4
##   [1] 2.81 3.06 2.75 3.48 3.10 2.75 3.15 3.22 3.17 2.91 3.45 3.12 2.81 2.34 3.34
##  [16] 2.99 3.00 3.28 3.25 3.18 3.28 3.23 3.02 2.40 3.19 2.98 2.95 2.56 2.86 3.13
##  [31] 3.41 2.97 3.12 2.98 2.59 2.88 2.88 2.98 3.33 3.23 2.95 2.92 3.21 3.17 2.79
##  [46] 2.79 3.11 3.23 2.97 3.26 3.12 2.82 3.10 2.66 3.43 3.59 2.89 2.69 3.17 2.96
##  [61] 3.72 2.99 3.21 3.01 2.78 3.06 2.46 3.44 3.05 3.65 3.14 2.79 3.18 2.72 2.62
##  [76] 3.09 2.87 3.00 3.02 2.82 2.83 2.96 3.35 2.54 3.18 3.10 3.32 2.91 3.11 3.08
##  [91] 2.84 3.36 3.35 3.21 3.48 3.17 2.62 2.83 2.63 2.86 2.81 3.01 2.73 3.05 2.80
## [106] 3.53 3.22 3.27 3.12 3.50 2.81 2.86 3.43 2.80 2.94 2.88 2.90 2.92 3.15 2.95
## [121] 2.85 3.40 2.94 2.95 2.97 3.21 2.98 2.99 2.80 2.90 3.02 2.82 3.16 2.54 3.09
## [136] 2.54 2.91 2.84 2.80 2.98 2.43 3.35 2.50 2.86 2.67 2.77 3.63 3.01 2.61 2.51

Menentukan beta

Membangkitkan data Y

Melakukan koefisien

b0 <- -15
b1 <- 1.7
b2 <- 0.5
b3 <- 1.1
b4 <- 3.5
set.seed(1)
xb <- b0+(b1*x1)+(b2*x2)+(b3*X3)+(b4*x4)
xb
##   [1] -5.165 -0.990 -3.175  3.880 -2.550 -3.175 -1.175 -0.930 -0.605  0.785
##  [11]  0.375  3.220 -0.665 -3.510  0.090  5.565 -2.800 -3.520 -3.625 -1.070
##  [21] -0.720 -2.595 -3.330 -5.500 -1.035  0.430 -3.075 -1.040 -4.490 -2.345
##  [31]  8.235 -0.105 -1.280 -2.970  0.865 -1.020 -0.420 -4.570 -2.845 -1.495
##  [41] -2.475 -0.880  3.035 -1.705 -1.835 -3.035 -1.915 -3.695  7.295 -0.290
##  [51]  1.020 -0.030  4.250 -1.790 -1.895 -0.235  3.615 -3.985 -1.105  0.960
##  [61]  4.720  2.265 -3.765 -2.765 -2.470 -2.090 -0.190  0.340 -1.525  1.675
##  [71] -1.210  6.565  2.330 -3.280 -5.830  1.415 -1.555 -1.700 -4.430  5.570
##  [81] -4.595 -1.840 -1.575 -2.810 -3.870 -3.650  1.120 -3.715 -1.315 -3.720
##  [91] -5.060 -1.640  3.525 -0.965  2.280 -1.705 -3.030 -1.695 -4.095 -3.390
## [101] -0.665 -0.565 -3.745 -3.225 -5.200  0.155 -0.930 -2.455 -2.380  2.350
## [111] -1.865 -4.990 -2.495  2.700 -1.910  4.080 -1.550 -0.280 -2.875 -2.475
## [121] -1.725 -2.600 -4.210 -4.175 -1.205 -0.965 -2.870 -2.335  5.000 -0.350
## [131] -2.830 -1.830 -2.840  0.090 -0.885 -3.310 -1.515 -3.460 -0.200 -0.670
## [141] -4.295 -1.075 -2.850 -3.290 -2.855 -3.105 -0.095  2.835 -1.965 -4.615
p <- exp(xb)/(1+exp(xb))
p
##   [1] 0.005680609 0.270912078 0.040117432 0.979767003 0.072426485 0.040117432
##   [7] 0.235952400 0.282924715 0.353200607 0.686756727 0.592666600 0.961580014
##  [13] 0.339617327 0.029029036 0.522484825 0.996185029 0.057324176 0.028748496
##  [19] 0.025957357 0.255403084 0.327392983 0.069460906 0.034556230 0.004070138
##  [25] 0.262115899 0.605873668 0.044150341 0.261149994 0.011096138 0.087464020
##  [31] 0.999734863 0.473774091 0.217550224 0.048799723 0.703704238 0.265027401
##  [37] 0.396516750 0.010251772 0.054940350 0.183172441 0.077629463 0.293177779
##  [43] 0.954130498 0.153813364 0.137643708 0.045869502 0.128420169 0.024245026
##  [49] 0.999321536 0.428003867 0.734972599 0.492500562 0.985936373 0.143072723
##  [55] 0.130675423 0.441518888 0.973788605 0.018253075 0.248804218 0.723121805
##  [61] 0.991163600 0.905936574 0.022643027 0.059245076 0.077988235 0.110072574
##  [67] 0.452642382 0.584190523 0.178726424 0.842241313 0.229701051 0.998593158
##  [73] 0.911331337 0.036263716 0.002929470 0.804553377 0.174365286 0.154465265
##  [79] 0.011774206 0.996203984 0.010001187 0.137051293 0.171504770 0.056786181
##  [85] 0.020432187 0.025332703 0.753988716 0.023776357 0.211651366 0.023660578
##  [91] 0.006305547 0.162465063 0.971390786 0.275878229 0.907207047 0.153813364
##  [97] 0.046088827 0.155119423 0.016382877 0.032609455 0.339617327 0.362391347
## [103] 0.023089885 0.038235692 0.005486299 0.538672605 0.282924715 0.079073677
## [109] 0.084710566 0.912934228 0.134121325 0.006759661 0.076209443 0.937026644
## [115] 0.128980852 0.983373644 0.175086268 0.430453776 0.053403330 0.077629463
## [121] 0.151228253 0.069138420 0.014629178 0.015142375 0.230586939 0.275878229
## [127] 0.053656652 0.088265461 0.993307149 0.413382421 0.055724398 0.138238273
## [133] 0.055200538 0.522484825 0.292142729 0.035229719 0.180198975 0.030472033
## [139] 0.450166003 0.338496841 0.013453117 0.254453386 0.054681317 0.035915846
## [145] 0.054423436 0.042901480 0.476267846 0.944538114 0.122926951 0.009805092
y <- rbinom(150, 1, p)
y
##   [1] 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1
##  [38] 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0
##  [75] 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1
## [112] 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
## [149] 0 0

Menyusun Data

randData <- data.frame(X1 = x1, X2 = x2, X3 = X3, X4 = x4)
head(randData, 150)
##     X1 X2 X3   X4
## 1    0  0  0 2.81
## 2    1  1  1 3.06
## 3    1  1  0 2.75
## 4    3  1  1 3.48
## 5    0  1  1 3.10
## 6    1  1  0 2.75
## 7    1  0  1 3.15
## 8    1  0  1 3.22
## 9    1  1  1 3.17
## 10   3  1  0 2.91
## 11   1  1  1 3.45
## 12   4  1  0 3.12
## 13   2  0  1 2.81
## 14   1  1  1 2.34
## 15   2  0  0 3.34
## 16   5  1  1 2.99
## 17   1  0  0 3.00
## 18   0  0  0 3.28
## 19   0  0  0 3.25
## 20   1  0  1 3.18
## 21   1  0  1 3.28
## 22   0  0  1 3.23
## 23   0  0  1 3.02
## 24   0  0  1 2.40
## 25   1  0  1 3.19
## 26   2  1  1 2.98
## 27   0  1  1 2.95
## 28   2  1  1 2.56
## 29   0  1  0 2.86
## 30   1  0  0 3.13
## 31   6  0  1 3.41
## 32   2  0  1 2.97
## 33   1  0  1 3.12
## 34   0  1  1 2.98
## 35   4  0  0 2.59
## 36   2  1  0 2.88
## 37   2  0  1 2.88
## 38   0  0  0 2.98
## 39   0  1  0 3.33
## 40   1  1  0 3.23
## 41   1  1  0 2.95
## 42   2  1  0 2.92
## 43   4  0  0 3.21
## 44   1  1  0 3.17
## 45   2  0  0 2.79
## 46   1  1  0 2.79
## 47   1  1  0 3.11
## 48   0  0  0 3.23
## 49   7  0  0 2.97
## 50   1  1  1 3.26
## 51   3  0  0 3.12
## 52   3  0  0 2.82
## 53   4  1  1 3.10
## 54   2  1  0 2.66
## 55   0  0  1 3.43
## 56   1  1  0 3.59
## 57   5  0  0 2.89
## 58   0  1  1 2.69
## 59   1  0  1 3.17
## 60   3  1  0 2.96
## 61   3  1  1 3.72
## 62   4  0  0 2.99
## 63   0  0  0 3.21
## 64   1  0  0 3.01
## 65   1  0  1 2.78
## 66   1  1  0 3.06
## 67   3  0  1 2.46
## 68   1  1  1 3.44
## 69   1  0  1 3.05
## 70   2  1  0 3.65
## 71   1  0  1 3.14
## 72   6  1  1 2.79
## 73   3  0  1 3.18
## 74   1  1  0 2.72
## 75   0  0  0 2.62
## 76   3  1  0 3.09
## 77   2  0  0 2.87
## 78   1  0  1 3.00
## 79   0  0  0 3.02
## 80   6  1  0 2.82
## 81   0  1  0 2.83
## 82   1  0  1 2.96
## 83   1  0  0 3.35
## 84   1  1  1 2.54
## 85   0  0  0 3.18
## 86   0  1  0 3.10
## 87   2  0  1 3.32
## 88   0  0  1 2.91
## 89   1  0  1 3.11
## 90   0  1  0 3.08
## 91   0  0  0 2.84
## 92   0  1  1 3.36
## 93   4  0  0 3.35
## 94   1  0  1 3.21
## 95   3  0  0 3.48
## 96   1  1  0 3.17
## 97   1  0  1 2.62
## 98   2  0  0 2.83
## 99   1  0  0 2.63
## 100  0  1  1 2.86
## 101  2  0  1 2.81
## 102  2  1  0 3.01
## 103  1  0  0 2.73
## 104  0  0  1 3.05
## 105  0  0  0 2.80
## 106  1  0  1 3.53
## 107  1  0  1 3.22
## 108  0  0  1 3.27
## 109  1  0  0 3.12
## 110  3  0  0 3.50
## 111  1  1  1 2.81
## 112  0  0  0 2.86
## 113  0  1  0 3.43
## 114  4  0  1 2.80
## 115  1  0  1 2.94
## 116  5  1  0 2.88
## 117  1  1  1 2.90
## 118  2  0  1 2.92
## 119  0  0  1 3.15
## 120  1  1  0 2.95
## 121  1  1  1 2.85
## 122  0  1  0 3.40
## 123  0  1  0 2.94
## 124  0  1  0 2.95
## 125  2  0  0 2.97
## 126  1  0  1 3.21
## 127  1  0  0 2.98
## 128  1  1  0 2.99
## 129  6  0  0 2.80
## 130  2  0  1 2.90
## 131  0  1  1 3.02
## 132  1  1  1 2.82
## 133  0  0  1 3.16
## 134  3  0  1 2.54
## 135  1  1  1 3.09
## 136  1  0  1 2.54
## 137  1  1  1 2.91
## 138  0  1  1 2.84
## 139  2  1  1 2.80
## 140  2  1  0 2.98
## 141  1  1  0 2.43
## 142  1  1  0 3.35
## 143  2  0  0 2.50
## 144  1  0  0 2.86
## 145  1  0  1 2.67
## 146  1  1  0 2.77
## 147  1  1  0 3.63
## 148  4  1  0 3.01
## 149  2  1  0 2.61
## 150  0  1  1 2.51

Analisis Regresi Logistik

modelreglog <- glm(y~x1+x2+X3+x4, family = binomial(link="logit"), data = randData)
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ x1 + x2 + X3 + x4, family = binomial(link = "logit"), 
##     data = randData)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -15.8249     3.7796  -4.187 2.83e-05 ***
## x1            1.7312     0.3211   5.391 7.01e-08 ***
## x2           -0.1740     0.5403  -0.322 0.747480    
## X3            2.0054     0.6487   3.091 0.001992 ** 
## x4            3.6673     1.0933   3.354 0.000796 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 183.26  on 149  degrees of freedom
## Residual deviance:  97.87  on 145  degrees of freedom
## AIC: 107.87
## 
## Number of Fisher Scoring iterations: 6

R Markdown

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Penjelasan Hasil

Skenario Y : Keputusan rugi/untung penjualan puding sedot X1 :Lama penjualan (minggu) X2 :Diskon penjualan (bulan) X3 :Penilaian produk dari pembeli(1= nyegerin, 2= nyegerin banget, 3=biasa) X4 :Usia pembeli puding sedot (15 hingga 30 tahun)

Dari skenario diatas terkait tentang penjualan puding sedot terdapat sebuah kesimpulan setelah diola menggunakan aplikasi Rstudio.

Kesimpulan

Dari hasil analisis regresi logistik menjelaskan bahwa lama penjualan dan tingkat ketertarikan konsumen dinyatakan mulai dari anak anak, remaja dan dewasa sangat berpengaruh signifikan. Selain itu, pemberian review rating penilaian produk sangat mendukung dalam penentu banyaknya rugi atau untung penjualan dalam jangka setiap minggunya.