Membangkitkan Data

Skenario

Y : Keputusan menolak/menerima murid baru di SMA x1 : Lama menempuh pendidikan SMP (bulan) x2 : Status murid saat ini (0: Murid baru, 1: Murid pindahan) x3 : Tingkat Pendidikan (0: Lulusan Sekolah Menengah Negeri, 1: Lulusan Sekolah Menengah Swasta) x4 : Nilai (skala 10)

## Membangkitkan data x1 x1 : Lama menempuh pendidikan SMP (bulan) Membangkitkan variabel x1 dengan lama pekerjaan 0-36 bulan dengan nilai tengah 15 dan banyak pendaftar adalah 1000

set.seed(1000)
n <- 1000
u <- runif(n)

x1 <- round(36*(-(log(1-u)/15)))
x1
##    [1]  1  3  0  3  2  0  3  2  1  1  1  3  1  5  3  0  2  2  0  2  0  4  1  0
##   [25]  2  3  1  4  0  0  2  0  2  8  2  3  0  4  2  1 13  2  0  2  4  3  3  2
##   [49]  1  2  3  3  0  2  2  3  3  2  5  2  1  0  3  8  1  6  1  6  0  4  2  3
##   [73]  1  1  5  0  1  1  0  0  1  0  6  0  2  0  2  1  1  1  6  4  2  0  2  2
##   [97]  0  3  0  1  2  1  0  3  3  4  0  3  2  1  4  3  0  2  2  0 13  1  1  0
##  [121]  3  1  1  2  5 12  5  3  1  0  1  2  1  0  7  1  0  4  2  0  0  2  3  2
##  [145]  2  1  6  2  1  5  1  2  2  2  6  0  3  2  2  5  5  1  2  5  1  7  6  6
##  [169]  3  1  1  3  2  5  0  2  0  8  9  6  9  1  0  1  3  1  1  2  1  4  3  1
##  [193]  3  2  4  5  1  0  9  3  0  1  2  2  1  1  4  2  2  3  2  2  3  2  0  1
##  [217]  5  0  5  4  4  1  1  1  1  2  1  4  8  2  1  1  2  2  0  1  7  1  2  4
##  [241]  3  7  1  0  3  5  5  3  2  4  1  4  1  2  0  2  2  1  1  3  1  1  4  1
##  [265]  5  0  2  4  2  2  1  0  5  1  0  2  0  1  2  3  2  4  3  5  1  2  4  1
##  [289]  0  3  1  1  5  1  7  0  2  7  3  0  0  1  4  0  2  3  6  4  2  3  0  3
##  [313]  0  1  2  0  2  1  0  0  2  5  4  0  9 10  1  2  1  7  1  1  3  5  3  1
##  [337]  1  4  2  2  2  4  1  2  1  0  1  0  0  3  0  1  9  3  5  4  2  5  1  3
##  [361]  7  1  5  3  6  1  5  4  3  2  2  3  1  2  4  0  5  3  1  9  1  2  0  1
##  [385]  1  1  2  0  3  0  7  8  3  7  2  4  2  6  0  2  4  1  4  3  0  3  1  1
##  [409]  1  1  2  0  2  0  1  4  4  5  1  1  1  3  4  0  1  0  0  3  1  4  0  1
##  [433]  2  2  1  2  1  8  1  0  0  9  1  4  0  0  3  3  6  4  2  0  0  1  3  0
##  [457]  4  2  1  0  1  3  1  1  9  4  0  2  1  3  2  5  3  1  0  1 10  2  0  4
##  [481]  1  0  3  4  2  0  3  9  2  0  2  2  3  1  3  0  2  0  0  1  3  8  1  3
##  [505]  3  1  4  0  1  4  3  4  1  0  2  7  0  4  5  1  1 11  0  1  1  2 10  0
##  [529]  8  2  2  3  2  3  4  3  7  4  2  9  0  8  3  3  4  0  1  0  1  1  1  0
##  [553]  1  0  1  0  1  1  4  4  3  3  5  2  1  0  1  2  5  1  8  1  7  1  0  0
##  [577]  9  4  1  0  0  0  1  5  1 11  0  1  0  3  1  0  1  1  2 13  1  2  1  4
##  [601]  3  1  0  1  2  0  1  1  5  1  1  2  0  7  0  4  1  1  0  1  2  3  6  3
##  [625]  0  5  2  8  2  1  1  1  1  1  1  3  0  2  6  0  1  3  3  1  6  4  0  1
##  [649]  3  1  4  5  3  2  2  4  7  0  1  1  0  4 10  1  3  2  1  1  4  1  1  4
##  [673]  3  1  2  1  4  3  4  1  1  0  1  0  4  0  1  2  4  1  3  4  3  5  3  1
##  [697]  1  0  1  0  1  3  0  5  0  1  3  0  1  0  2  8  7  0  1 13  1  0  3 10
##  [721]  1  1  1  1  1  9  1  5  0  5  1  4  1  0  3  0  1  7  4  2  0  1  6  2
##  [745]  0  9  6  2  9  1  4  1  4  2  6  2  1  1  0  1  3  3  4  0  6  1  2  0
##  [769]  0  6  8  4  1  2  1  0  1  1  5  1  7  1  0  3  2  3  0  1  4  2  1 10
##  [793]  1  7  2  1  1  2  5  1  1  0  1  6  2  4  2  0  3  2  3  0  2  2  1  6
##  [817]  2  4  2  0  2  2  2  3  0  4  1  2  1  2  1  1  3  2  1  2  1  2  1  0
##  [841]  0  0  0  1  2  1  0  2  1  1  2  3  3  1  1  0  0  2  1  7  0  2  4  1
##  [865]  3  0  2  2  2  6  3  0  2  3  5  0  3  1  1  1  1 10  2  0  0  1  3  2
##  [889]  1  0  1  0  6  0  2  1  7  3  1  2  7  0  3  2  2  1  2  1  2  0  3  6
##  [913]  9  2  1  0  3  4  0  1  2  3  5  6  3  0  1  4  1  4  3  3  0  3  6  1
##  [937]  0  3  2  1  1  4  2 12  2  2  2  0  2  2  1  5  0  3  1  2  2  1  1  0
##  [961]  2  1  1  0  0  0  5  3  2  5  3  0  2  0  8  2  8  1  3  1  1  2  1  0
##  [985]  1  2  2  2  1  4  0  3  2  2  3  2  1  7  1  2

Membangkitkan data x2

x2: Status murid saat ini Keterangan yang digantikan (0=Murid baru) dan (1=Murid pindahan)

set.seed(100)
x2 <- round(runif(n))
x2
##    [1] 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0
##   [38] 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1
##   [75] 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 1
##  [112] 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0
##  [149] 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0
##  [186] 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0
##  [223] 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1
##  [260] 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0
##  [297] 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0
##  [334] 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1
##  [371] 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 1
##  [408] 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1
##  [445] 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
##  [482] 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0
##  [519] 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1
##  [556] 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0
##  [593] 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0
##  [630] 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 0
##  [667] 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1
##  [704] 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 1
##  [741] 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1
##  [778] 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1
##  [815] 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 1
##  [852] 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1
##  [889] 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0
##  [926] 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0
##  [963] 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 0
## [1000] 1

Membangkitkan data x3

x3: Tingkat pendidikan Keterangan yang digunakan (0=Lulusan Sekolah Menengah Negeri) dan (1=Lulusan Sekolah Menengah Swasta)

set.seed(111)
x3 <- round(runif(n))
x3
##    [1] 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0
##   [38] 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0
##   [75] 1 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0
##  [112] 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0
##  [149] 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0
##  [186] 0 1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1
##  [223] 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 1
##  [260] 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1
##  [297] 0 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1
##  [334] 1 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0
##  [371] 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
##  [408] 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1
##  [445] 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 0 1
##  [482] 0 1 1 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1
##  [519] 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0
##  [556] 1 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0
##  [593] 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 0
##  [630] 0 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0
##  [667] 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1
##  [704] 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1
##  [741] 1 0 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 0 1
##  [778] 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 1
##  [815] 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0
##  [852] 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1
##  [889] 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0
##  [926] 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0
##  [963] 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0
## [1000] 1

Membangkitkan data x4

x4 adalah nilai pendaftar dengan skala 10

set.seed(125)
x4 <- sample(1:10,1000,replace = TRUE)
x4
##    [1] 10  8  8  3  9  9  3  4  3 10  7  5 10  7  6  1  9 10  3  4  2 10 10  7
##   [25]  3  8  4  2  6  6  9 10  9  4  9  5  6  1  5  1 10  7  4  1  7  6  3  8
##   [49]  9  1  3  3  6  6  7  7  7  7  5  1  3  1  4  3  1  9  1 10  2  8  2  3
##   [73]  7  6  6  7  5  6 10  8  8  2  9  6  6  2  6  3  9  3  5  4  8  7  2  4
##   [97] 10  2  8 10 10  9  7  2 10  2  7  5  6  1  6 10  9  3  7 10  6  8 10  9
##  [121]  4  1  8 10  1  7  8  3  5  3  4  1  2  6  9  9  2  4  1  3  9  3  2  3
##  [145]  2  7  5  3  7 10  6  5  9  8  7  8  1  5  8  8  1  7  5  7  1  5  4  4
##  [169]  7  9  4  7  7  3  5  5  8  5  9  1  5  5  8  5  9  6  9  3 10  7  2  5
##  [193]  2  6  8  7  8  2 10  3  6  3  1  7  8  5  9  2  2  7  1  6  6 10 10  2
##  [217]  5  2  7  9  8 10  4  9 10  7  6  4  1  7  6  6  1  9  7  1  2  9  2  9
##  [241]  3  6  4  5  5  6  1  3  2 10  4  2  5  8  6  2  4  8  2  1  3  3  8  2
##  [265]  4  2  4  7  6  1  9  6  1  4  5  8  2 10  1  9  3  7  6  7 10  4  8  7
##  [289]  1  8  7  6  2  1  5  9  5  9  8  2  8  7 10  2  8  3  1  8  9  1  9  4
##  [313]  2  1  4  2 10  4  8 10  9 10  5  9  7  7  1  8  8 10 10  6  6 10  6 10
##  [337]  3  5  6  2  9  6 10  1  2  9  2  3  1  8  5  1  6 10  9  5  5  2  3  7
##  [361]  1  5  1  1  1  5  8  4  4  7  7  6  1  1  6  9  2  5  2  7  9  2  2 10
##  [385] 10  4  3  4  3 10  1  2  2  7  7  2  1  7  7 10  8  8  2  9 10  6 10  2
##  [409]  5  9  7  8  4  5  8  5  9  5  3  4  2  5  8  1  5  8  9 10 10  3  9  6
##  [433]  9  8  5  8 10  4  3  4  2  8  8  7  3  6  1  3  7  6  2  8  1  1  4  5
##  [457]  6  1  2  4  1  4  2  5  9  4  4  8  9  4  8  3  7  8  7 10  1  4  6  8
##  [481]  4  9  3  1  4  5  1  6 10  2 10  8  7  8  5  5  7  6  2  9  4 10  9  8
##  [505]  3  6  9  7  7  7 10 10  9  3  4  3  7  4  9  5  9  9  2  1  8  6  5  5
##  [529]  3  8  7  6  9  5  5  1  4  6  8  2  3  8  1  3  2  8  9  6 10  5  9  3
##  [553]  7  2  8  6  6  1  9  8  9  6  9  4 10  5  1  5 10  7  8 10  2  4  7 10
##  [577]  7  7 10 10  9  6  7 10  7  8  6  8  3  9  9  5  1  9  3  4  3  8  6  9
##  [601]  2  8  5 10  4  6  5  9  2  7  4  6  6  5  5  1  8  1  7 10  4 10  4  8
##  [625]  8  8  2  5  7  1  8  4  6 10 10  6  1  6  1  2  1  4  6  1  8  6  3  7
##  [649]  4  3  7  8  9 10  9  9  7  9  6  3  9  7  6  9 10  8  1  5  6 10 10  7
##  [673]  3  5  5  5 10  5  9  6  1 10  5  7 10  1  7  6  7 10  6  1  7  6  2  7
##  [697]  7  1  5  1 10  2  5  3  1  3  3  5  1  6  4  7  8  6 10  2  6 10  5  8
##  [721]  8  6  5  4  1  2  4 10  7  6 10  9  4  3  2 10  3  2  2  5  6  5  5  7
##  [745] 10  6  8  2  9  3 10  9  7  3  6  5  1  9  3  7  3  1  1  4  8  2  3 10
##  [769]  5  6  8 10  7  5  1  6  3  9  9  7  8 10  6  8  5  3  2  1  4  8  1  5
##  [793]  1  3  3  5  4  9  8  9  6  1  8  9  6  6  5  9  2  6 10  9  7  1  8  6
##  [817]  1  8  5 10  6  4  6  6  6  1  3  5  2  7  5  7  8  7  7  9  8 10  1  8
##  [841]  1  8  1  5  2  1  1  4  3  8  4  2  6  3  9  9  1  1  6  9 10  9  4  9
##  [865]  2  2  3  1  3  2  1  4  7  2  2  6  6  9  2  8 10  9  9  7  9  4  9  4
##  [889]  1  8  7  9  9  6 10  9  6  3  5  5 10  7  2  5  8  8  8  2  3  3  6  6
##  [913]  6  7  2  1  3  7  3  9  3  1  3  9  9  2  8  6  6  5  6  5  9  3  3  1
##  [937]  8  8  4  7  2  3  5  6  5  4  5  4 10  5  9  3  5  2  9  6  2  1  6  4
##  [961]  8  3  6  8  8  7  1  4  9  1  5  2  6  8 10  2  3  4  2  6  4  4  2  5
##  [985]  8 10  3  5  4  8  5  7 10  5 10  3  5  3  1  2

Membangkitkan data Y

menentukan koef

b0 <- -11
b1 <- 3.1
b2 <- 0.2
b3 <- 2.7
b4 <- 2.5
set.seed(104)
datapendukung <- b0+(b1*x1)+(b2*x2)+(b3*x3)+(b4*x4)
datapendukung
##    [1] 19.8 21.0  9.2  8.5 17.7 11.5  6.0  7.9 -0.2 17.1 12.5 13.7 17.1 22.0
##   [15] 13.5 -8.3 17.7 22.9 -3.5  8.1 -5.8 26.6 17.3  6.7  5.4 18.3  5.0  6.6
##   [29]  6.9  6.7 17.7 16.9 17.7 24.0 17.9 13.7  4.0  6.8 10.6 -2.7 57.0 12.9
##   [43]  1.9  0.6 21.8 13.3  6.0 18.1 17.3  0.4  8.5  8.5  4.0 10.2 15.6 18.5
##   [57] 18.5 12.7 17.2  0.4 -0.4 -8.3  8.5 21.5 -2.7 30.1 -5.4 32.6 -6.0 21.6
##   [71]  2.9  8.5  9.8  7.3 22.4  6.7  4.8 10.0 14.2 11.7 12.1 -3.1 30.3  4.2
##   [85] 10.2 -5.8 13.1  2.3 17.3  2.5 23.0 14.1 17.9  9.2  3.1  5.2 16.9  3.3
##   [99] 11.7 20.0 22.9 14.6  9.2  3.3 26.2  6.6  9.4 11.0 12.9 -2.5 16.6 26.2
##  [113] 14.2  5.4 15.6 16.7 47.2 15.0 17.1 14.4  8.3 -2.7 14.8 23.1  9.7 43.7
##  [127] 27.4  8.7  7.5 -3.5  2.1  0.6  0.0  6.7 33.4 14.6 -3.3 14.1  0.4 -3.3
##  [141] 14.4  5.4  6.0  5.6  0.2  9.8 23.0  2.7  9.6 29.5 10.0  7.9 17.7 15.2
##  [155] 25.3 11.9  3.7  7.9 17.9 27.4  7.2  9.8  7.7 22.0 -2.7 23.2 17.6 20.5
##  [169] 16.0 17.5  4.8 18.5 15.6 12.2  1.7 10.4  9.2 29.2 42.1 10.3 32.1  7.5
##  [183] 11.9  4.8 20.8  7.1 17.3  5.4 19.8 21.8  3.5  7.3  6.0 10.4 21.6 22.0
##  [197] 12.1 -3.1 41.9  8.7  6.7  2.5 -2.1 15.6 14.8  4.8 26.8  0.4  0.2 18.5
##  [211] -2.3 13.1 13.3 20.2 16.7  0.0 19.9 -5.8 22.0 26.6 24.3 19.8  5.0 17.5
##  [225] 17.1 12.9  9.8 14.1 16.3 15.4  7.3  9.8 -2.1 20.6  6.5 -2.7 18.4 17.5
##  [239]  3.1 26.8  8.5 25.9  5.0  1.7 10.8 19.7  9.9  5.8  2.9 26.4  2.1  6.6
##  [253]  7.3 17.9  6.9  3.1  7.9 14.8  0.0  1.0  2.3  2.5 24.1  0.0 14.7 -5.8
##  [267]  5.2 18.9 13.1 -2.1 14.8  6.9  7.0  2.1  1.7 18.1 -3.3 17.1 -2.1 20.8
##  [281]  5.4 21.6 16.0 24.7 17.3  8.1 24.3  9.8 -5.8 18.3 12.3 10.0 12.2 -5.2
##  [295] 23.2 14.2  7.9 33.4 21.2 -3.1  9.2  9.8 26.6 -3.1 15.2  8.7 12.8 24.3
##  [309] 17.9  3.7 11.5 11.2 -6.0 -2.7  7.9 -3.1 20.4  2.3 11.9 16.9 20.4 29.7
##  [323] 14.1 11.7 37.1 37.7 -2.5 18.1 15.0 35.9 19.8  9.8 16.0 32.4 16.0 17.1
##  [337]  2.5 16.6 10.4  3.1 20.6 16.4 20.0 -2.3 -2.9 11.5  0.0 -0.6 -8.5 18.5
##  [351]  1.5 -5.4 34.8 26.0 29.7 16.6 10.6 12.2 -0.2 15.8 13.2  4.6  7.2  0.8
##  [365] 10.3  4.8 24.5 14.1  8.5 12.9 12.9 13.5 -2.7 -2.3 16.4 14.2  9.5 13.5
##  [379] -0.2 34.6 17.3  2.9 -3.3 17.1 17.3  2.3  2.7  1.9  6.0 16.9 13.2 21.5
##  [393]  3.5 28.2 12.9  9.3 -2.3 25.1  6.7 22.9 21.6 12.1  6.4 20.8 16.9 13.5
##  [407] 17.3 -2.7  4.8 17.3 15.4 11.9  7.9  4.4 12.1 14.1 26.6 17.2  2.5  5.0
##  [421] -2.7 11.0 24.3 -5.6  7.3 11.7 14.2 26.2 17.1  8.9 14.4  7.1 20.4 15.2
##  [435]  7.3 18.1 17.3 26.7  2.3 -0.8 -3.3 39.6 12.1 21.8 -3.3  4.2  1.0  8.5
##  [449] 25.3 19.1  2.9  9.2 -8.3 -5.2  8.3  4.4 16.6 -2.1 -2.9 -1.0 -2.5 11.2
##  [463]  0.0  7.5 42.1 14.3  1.7 17.9 17.3 11.0 15.2 12.0 18.5 12.1  9.4 17.3
##  [477] 25.4  5.4  6.9 21.6  4.8 11.5  8.7  6.6  7.9  4.2  3.5 32.1 23.1 -3.3
##  [491] 20.4 17.9 18.5 14.8 10.8  4.4 12.7  6.7 -3.1 14.6  8.3 41.7 17.3 18.3
##  [505]  8.5  9.8 24.1  9.2  9.8 19.1 23.3 26.4 17.3 -0.8  8.1 18.2  6.5 14.1
##  [519] 27.0  7.5 17.5 45.8 -5.8 -5.2 12.1 10.2 32.7  1.7 24.2 17.9 12.9 13.5
##  [533] 17.9 13.7 16.6  0.8 23.4 16.6 15.4 24.8 -0.6 36.7  3.7  6.0  9.3 11.9
##  [547] 17.3  6.9 17.3  4.8 17.3 -3.3 12.3 -3.1 12.3  6.9 10.0 -5.4 26.6 21.4
##  [561] 23.7 16.0 27.2  5.4 20.0  4.2 -5.2  7.9 32.4  9.8 34.0 17.1 18.6  4.8
##  [575]  9.2 14.0 34.6 21.6 17.3 14.0 11.7  6.9 12.3 29.7  9.6 46.0  4.2 12.3
##  [589] -0.8 21.0 14.6  1.5 -5.2 14.8  2.9 42.2 -0.2 15.2  9.8 23.9  6.0 15.0
##  [603]  4.2 17.1  5.2  6.9  4.6 17.5  9.7  9.6  5.0 12.9  6.9 23.4  1.7  6.6
##  [617] 12.1 -2.7  9.4 19.8  8.1 26.2 17.6 21.0 11.7 24.7  0.2 29.2 12.7 -5.4
##  [631] 15.0  2.3  7.1 17.1 19.8 16.0 -5.8 10.4 10.3 -6.0 -2.7 11.2 13.5 -2.7
##  [645] 27.8 19.1 -3.5 12.5 11.2  2.3 19.1 24.5 21.0 20.4 20.6 23.9 31.1 14.4
##  [659]  7.1 -0.4 14.2 21.6 37.9 14.8 23.5 15.2 -5.2  7.3 16.6 17.3 19.8 18.9
##  [673]  8.5  7.3 10.4  7.3 29.1 11.0 23.9  7.1 -5.2 16.7  4.6  9.4 29.3 -8.3
##  [687]  9.8 13.1 21.6 20.0 16.2  6.8 15.8 19.5  6.2  9.8  9.8 -8.5  7.3 -8.3
##  [701] 17.1  6.2  4.4 12.0 -8.5  2.3  5.8  4.4 -5.2  6.7  7.9 34.2 30.9  6.9
##  [715] 19.8 37.0  7.3 14.0 13.5 42.9 12.1  9.8  7.5  4.8 -5.2 21.9  2.3 29.7
##  [729]  9.4 22.4 19.8 23.9  2.1 -0.6  3.5 16.9  2.3 18.6  9.3 10.6  6.7  4.8
##  [743] 23.0 15.6 14.2 32.1 30.5  0.2 42.1 -0.2 26.4 17.5 19.1  5.4 25.5 10.4
##  [757] -5.4 14.6 -0.8 12.5  8.5  1.0  6.8  1.7 30.3 -2.7  5.4 16.9  1.5 25.5
##  [771] 36.7 29.1 12.3  7.9 -2.7  4.2  2.5 14.6 29.7 12.3 33.4 19.8  6.9 18.3
##  [785]  7.9  6.0 -6.0 -2.7 11.4 15.4 -2.5 32.5 -5.4 18.2  2.7  4.6  4.8 20.6
##  [799] 27.2 14.8  7.1 -5.8 12.1 33.0 13.1 16.4  7.7 14.4  3.3 10.4 23.5 11.7
##  [813] 15.4  0.6 12.1 22.6 -2.1 21.4 10.6 14.0 10.4  7.9 10.4 13.5  6.9  4.1
##  [827] -0.4  7.7 -2.9 15.6  7.3 12.5 21.2 15.6 12.3 17.7 12.1 23.1 -5.4  9.2
##  [841] -8.3  9.2 -5.6  4.6  2.9 -5.2 -5.6  5.2 -0.2 14.8  5.4  6.0 13.3  2.3
##  [855] 14.6 11.7 -8.3  0.4  9.8 33.4 16.9 20.4 14.1 14.8  3.5 -6.0  5.4  0.6
##  [869]  5.6 12.6  3.7  1.9 12.7  3.5  9.7  4.2 13.5 17.3 -0.2 12.3 17.1 45.4
##  [883] 20.6  9.4 14.4  2.1 23.5  8.1 -5.2 11.9 12.5 11.7 30.1  4.0 20.2 14.6
##  [897] 28.4  5.8  4.8 10.4 35.7  6.5  6.0  7.9 15.4 15.0 15.4  0.0  5.4 -3.5
##  [911] 16.2 22.6 32.1 15.6  0.0 -5.6  5.8 21.6 -0.8 14.6  2.9  3.5 12.0 33.0
##  [925] 20.8 -5.8 12.1 16.6  7.3 14.1 16.0 13.7 11.5  8.7 18.0 -5.2  9.0 18.5
##  [939]  5.2 12.5  0.0  9.1  7.7 43.9  7.9  8.1  7.7  1.9 22.9 10.4 17.5 12.2
##  [953]  4.4  6.2 14.8 10.4  3.1 -2.7  7.1 -0.8 18.1 -0.4  7.3  9.2  9.2  6.7
##  [967]  9.7 11.2 20.4  7.2 11.0 -3.3 10.2  9.2 41.5  0.4 21.5  2.3  3.3  7.3
##  [981]  5.0  5.4 -2.9  1.5 12.3 20.4  2.7  7.9  4.8 24.3  4.2 15.8 23.1 10.6
##  [995] 26.0  5.6  4.6 20.9 -5.4  3.1
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##    [1] 0.9999999975 0.9999999992 0.9998989708 0.9997965730 0.9999999794
##    [6] 0.9999898700 0.9975273768 0.9996293939 0.4501660027 0.9999999625
##   [11] 0.9999962734 0.9999988776 0.9999999625 0.9999999997 0.9999986290
##   [16] 0.0002484551 0.9999999794 0.9999999999 0.0293122308 0.9996965530
##   [21] 0.0030184163 1.0000000000 0.9999999693 0.9987706014 0.9955037268
##   [26] 0.9999999887 0.9933071491 0.9986414800 0.9989932292 0.9987706014
##   [31] 0.9999999794 0.9999999542 0.9999999794 1.0000000000 0.9999999832
##   [36] 0.9999988776 0.9820137900 0.9988874640 0.9999750846 0.0629733561
##   [41] 1.0000000000 0.9999975020 0.8698915256 0.6456563062 0.9999999997
##   [46] 0.9999983255 0.9975273768 0.9999999862 0.9999999693 0.5986876601
##   [51] 0.9997965730 0.9997965730 0.9820137900 0.9999628311 0.9999998321
##   [56] 0.9999999908 0.9999999908 0.9999969489 0.9999999661 0.5986876601
##   [61] 0.4013123399 0.0002484551 0.9997965730 0.9999999995 0.0629733561
##   [66] 1.0000000000 0.0044962732 1.0000000000 0.0024726232 0.9999999996
##   [71] 0.9478464369 0.9997965730 0.9999445515 0.9993249173 0.9999999998
##   [76] 0.9987706014 0.9918374288 0.9999546021 0.9999993192 0.9999917062
##   [81] 0.9999944405 0.0431072549 1.0000000000 0.9852259683 0.9999628311
##   [86] 0.0030184163 0.9999979548 0.9088770390 0.9999999693 0.9241418200
##   [91] 0.9999999999 0.9999992476 0.9999999832 0.9998989708 0.9568927451
##   [96] 0.9945137011 0.9999999542 0.9644288107 0.9999917062 0.9999999979
##  [101] 0.9999999999 0.9999995436 0.9998989708 0.9644288107 1.0000000000
##  [106] 0.9986414800 0.9999172828 0.9999832986 0.9999975020 0.0758581800
##  [111] 0.9999999382 1.0000000000 0.9999993192 0.9955037268 0.9999998321
##  [116] 0.9999999441 1.0000000000 0.9999996941 0.9999999625 0.9999994426
##  [121] 0.9997515449 0.0629733561 0.9999996264 0.9999999999 0.9999387203
##  [126] 1.0000000000 1.0000000000 0.9998334419 0.9994472214 0.0293122308
##  [131] 0.8909031788 0.6456563062 0.5000000000 0.9987706014 1.0000000000
##  [136] 0.9999995436 0.0355711893 0.9999992476 0.5986876601 0.0355711893
##  [141] 0.9999994426 0.9955037268 0.9975273768 0.9963157601 0.5498339973
##  [146] 0.9999445515 0.9999999999 0.9370266439 0.9999322759 1.0000000000
##  [151] 0.9999546021 0.9996293939 0.9999999794 0.9999997495 1.0000000000
##  [156] 0.9999932096 0.9758729786 0.9996293939 0.9999999832 1.0000000000
##  [161] 0.9992539712 0.9999445515 0.9995473778 0.9999999997 0.0629733561
##  [166] 0.9999999999 0.9999999773 0.9999999987 0.9999998875 0.9999999749
##  [171] 0.9918374288 0.9999999908 0.9999998321 0.9999949696 0.8455347349
##  [176] 0.9999695684 0.9998989708 1.0000000000 1.0000000000 0.9999663680
##  [181] 1.0000000000 0.9994472214 0.9999932096 0.9918374288 0.9999999991
##  [186] 0.9991755753 0.9999999693 0.9955037268 0.9999999975 0.9999999997
##  [191] 0.9706877692 0.9993249173 0.9975273768 0.9999695684 0.9999999996
##  [196] 0.9999999997 0.9999944405 0.0431072549 1.0000000000 0.9998334419
##  [201] 0.9987706014 0.9241418200 0.1090968212 0.9999998321 0.9999996264
##  [206] 0.9918374288 1.0000000000 0.5986876601 0.5498339973 0.9999999908
##  [211] 0.0911229610 0.9999979548 0.9999983255 0.9999999983 0.9999999441
##  [216] 0.5000000000 0.9999999977 0.0030184163 0.9999999997 1.0000000000
##  [221] 1.0000000000 0.9999999975 0.9933071491 0.9999999749 0.9999999625
##  [226] 0.9999975020 0.9999445515 0.9999992476 0.9999999166 0.9999997949
##  [231] 0.9993249173 0.9999445515 0.1090968212 0.9999999989 0.9984988177
##  [236] 0.0629733561 0.9999999898 0.9999999749 0.9568927451 1.0000000000
##  [241] 0.9997965730 1.0000000000 0.9933071491 0.8455347349 0.9999796009
##  [246] 0.9999999972 0.9999498278 0.9969815837 0.9478464369 1.0000000000
##  [251] 0.8909031788 0.9986414800 0.9993249173 0.9999999832 0.9989932292
##  [256] 0.9568927451 0.9996293939 0.9999996264 0.5000000000 0.7310585786
##  [261] 0.9088770390 0.9241418200 1.0000000000 0.5000000000 0.9999995871
##  [266] 0.0030184163 0.9945137011 0.9999999938 0.9999979548 0.1090968212
##  [271] 0.9999996264 0.9989932292 0.9990889488 0.8909031788 0.8455347349
##  [276] 0.9999999862 0.0355711893 0.9999999625 0.1090968212 0.9999999991
##  [281] 0.9955037268 0.9999999996 0.9999998875 1.0000000000 0.9999999693
##  [286] 0.9996965530 1.0000000000 0.9999445515 0.0030184163 0.9999999887
##  [291] 0.9999954483 0.9999546021 0.9999949696 0.0054862989 0.9999999999
##  [296] 0.9999993192 0.9996293939 1.0000000000 0.9999999994 0.0431072549
##  [301] 0.9998989708 0.9999445515 1.0000000000 0.0431072549 0.9999997495
##  [306] 0.9998334419 0.9999972392 1.0000000000 0.9999999832 0.9758729786
##  [311] 0.9999898700 0.9999863260 0.0024726232 0.0629733561 0.9996293939
##  [316] 0.0431072549 0.9999999986 0.9088770390 0.9999932096 0.9999999542
##  [321] 0.9999999986 1.0000000000 0.9999992476 0.9999917062 1.0000000000
##  [326] 1.0000000000 0.0758581800 0.9999999862 0.9999996941 1.0000000000
##  [331] 0.9999999975 0.9999445515 0.9999998875 1.0000000000 0.9999998875
##  [336] 0.9999999625 0.9241418200 0.9999999382 0.9999695684 0.9568927451
##  [341] 0.9999999989 0.9999999246 0.9999999979 0.0911229610 0.0521535631
##  [346] 0.9999898700 0.5000000000 0.3543436938 0.0002034270 0.9999999908
##  [351] 0.8175744762 0.0044962732 1.0000000000 1.0000000000 1.0000000000
##  [356] 0.9999999382 0.9999750846 0.9999949696 0.4501660027 0.9999998625
##  [361] 0.9999981494 0.9900481981 0.9992539712 0.6899744811 0.9999663680
##  [366] 0.9918374288 1.0000000000 0.9999992476 0.9997965730 0.9999975020
##  [371] 0.9999975020 0.9999986290 0.0629733561 0.0911229610 0.9999999246
##  [376] 0.9999993192 0.9999251538 0.9999986290 0.4501660027 1.0000000000
##  [381] 0.9999999693 0.9478464369 0.0355711893 0.9999999625 0.9999999693
##  [386] 0.9088770390 0.9370266439 0.8698915256 0.9975273768 0.9999999542
##  [391] 0.9999981494 0.9999999995 0.9706877692 1.0000000000 0.9999975020
##  [396] 0.9999085841 0.0911229610 1.0000000000 0.9987706014 0.9999999999
##  [401] 0.9999999996 0.9999944405 0.9983411989 0.9999999991 0.9999999542
##  [406] 0.9999986290 0.9999999693 0.0629733561 0.9918374288 0.9999999693
##  [411] 0.9999997949 0.9999932096 0.9996293939 0.9878715650 0.9999944405
##  [416] 0.9999992476 1.0000000000 0.9999999661 0.9241418200 0.9933071491
##  [421] 0.0629733561 0.9999832986 1.0000000000 0.0036842399 0.9993249173
##  [426] 0.9999917062 0.9999993192 1.0000000000 0.9999999625 0.9998636297
##  [431] 0.9999994426 0.9991755753 0.9999999986 0.9999997495 0.9993249173
##  [436] 0.9999999862 0.9999999693 1.0000000000 0.9088770390 0.3100255189
##  [441] 0.0355711893 1.0000000000 0.9999944405 0.9999999997 0.0355711893
##  [446] 0.9852259683 0.7310585786 0.9997965730 1.0000000000 0.9999999949
##  [451] 0.9478464369 0.9998989708 0.0002484551 0.0054862989 0.9997515449
##  [456] 0.9878715650 0.9999999382 0.1090968212 0.0521535631 0.2689414214
##  [461] 0.0758581800 0.9999863260 0.5000000000 0.9994472214 1.0000000000
##  [466] 0.9999993840 0.8455347349 0.9999999832 0.9999999693 0.9999832986
##  [471] 0.9999997495 0.9999938558 0.9999999908 0.9999944405 0.9999172828
##  [476] 0.9999999693 1.0000000000 0.9955037268 0.9989932292 0.9999999996
##  [481] 0.9918374288 0.9999898700 0.9998334419 0.9986414800 0.9996293939
##  [486] 0.9852259683 0.9706877692 1.0000000000 0.9999999999 0.0355711893
##  [491] 0.9999999986 0.9999999832 0.9999999908 0.9999996264 0.9999796009
##  [496] 0.9878715650 0.9999969489 0.9987706014 0.0431072549 0.9999995436
##  [501] 0.9997515449 1.0000000000 0.9999999693 0.9999999887 0.9997965730
##  [506] 0.9999445515 1.0000000000 0.9998989708 0.9999445515 0.9999999949
##  [511] 0.9999999999 1.0000000000 0.9999999693 0.3100255189 0.9996965530
##  [516] 0.9999999875 0.9984988177 0.9999992476 1.0000000000 0.9994472214
##  [521] 0.9999999749 1.0000000000 0.0030184163 0.0054862989 0.9999944405
##  [526] 0.9999628311 1.0000000000 0.8455347349 1.0000000000 0.9999999832
##  [531] 0.9999975020 0.9999986290 0.9999999832 0.9999988776 0.9999999382
##  [536] 0.6899744811 0.9999999999 0.9999999382 0.9999997949 1.0000000000
##  [541] 0.3543436938 1.0000000000 0.9758729786 0.9975273768 0.9999085841
##  [546] 0.9999932096 0.9999999693 0.9989932292 0.9999999693 0.9918374288
##  [551] 0.9999999693 0.0355711893 0.9999954483 0.0431072549 0.9999954483
##  [556] 0.9989932292 0.9999546021 0.0044962732 1.0000000000 0.9999999995
##  [561] 0.9999999999 0.9999998875 1.0000000000 0.9955037268 0.9999999979
##  [566] 0.9852259683 0.0054862989 0.9996293939 1.0000000000 0.9999445515
##  [571] 1.0000000000 0.9999999625 0.9999999916 0.9918374288 0.9998989708
##  [576] 0.9999991685 1.0000000000 0.9999999996 0.9999999693 0.9999991685
##  [581] 0.9999917062 0.9989932292 0.9999954483 1.0000000000 0.9999322759
##  [586] 1.0000000000 0.9852259683 0.9999954483 0.3100255189 0.9999999992
##  [591] 0.9999995436 0.8175744762 0.0054862989 0.9999996264 0.9478464369
##  [596] 1.0000000000 0.4501660027 0.9999997495 0.9999445515 1.0000000000
##  [601] 0.9975273768 0.9999996941 0.9852259683 0.9999999625 0.9945137011
##  [606] 0.9989932292 0.9900481981 0.9999999749 0.9999387203 0.9999322759
##  [611] 0.9933071491 0.9999975020 0.9989932292 0.9999999999 0.8455347349
##  [616] 0.9986414800 0.9999944405 0.0629733561 0.9999172828 0.9999999975
##  [621] 0.9996965530 1.0000000000 0.9999999773 0.9999999992 0.9999917062
##  [626] 1.0000000000 0.5498339973 1.0000000000 0.9999969489 0.0044962732
##  [631] 0.9999996941 0.9088770390 0.9991755753 0.9999999625 0.9999999975
##  [636] 0.9999998875 0.0030184163 0.9999695684 0.9999663680 0.0024726232
##  [641] 0.0629733561 0.9999863260 0.9999986290 0.0629733561 1.0000000000
##  [646] 0.9999999949 0.0293122308 0.9999962734 0.9999863260 0.9088770390
##  [651] 0.9999999949 1.0000000000 0.9999999992 0.9999999986 0.9999999989
##  [656] 1.0000000000 1.0000000000 0.9999994426 0.9991755753 0.4013123399
##  [661] 0.9999993192 0.9999999996 1.0000000000 0.9999996264 0.9999999999
##  [666] 0.9999997495 0.0054862989 0.9993249173 0.9999999382 0.9999999693
##  [671] 0.9999999975 0.9999999938 0.9997965730 0.9993249173 0.9999695684
##  [676] 0.9993249173 1.0000000000 0.9999832986 1.0000000000 0.9991755753
##  [681] 0.0054862989 0.9999999441 0.9900481981 0.9999172828 1.0000000000
##  [686] 0.0002484551 0.9999445515 0.9999979548 0.9999999996 0.9999999979
##  [691] 0.9999999079 0.9988874640 0.9999998625 0.9999999966 0.9979746796
##  [696] 0.9999445515 0.9999445515 0.0002034270 0.9993249173 0.0002484551
##  [701] 0.9999999625 0.9979746796 0.9878715650 0.9999938558 0.0002034270
##  [706] 0.9088770390 0.9969815837 0.9878715650 0.0054862989 0.9987706014
##  [711] 0.9996293939 1.0000000000 1.0000000000 0.9989932292 0.9999999975
##  [716] 1.0000000000 0.9993249173 0.9999991685 0.9999986290 1.0000000000
##  [721] 0.9999944405 0.9999445515 0.9994472214 0.9918374288 0.0054862989
##  [726] 0.9999999997 0.9088770390 1.0000000000 0.9999172828 0.9999999998
##  [731] 0.9999999975 1.0000000000 0.8909031788 0.3543436938 0.9706877692
##  [736] 0.9999999542 0.9088770390 0.9999999916 0.9999085841 0.9999750846
##  [741] 0.9987706014 0.9918374288 0.9999999999 0.9999998321 0.9999993192
##  [746] 1.0000000000 1.0000000000 0.5498339973 1.0000000000 0.4501660027
##  [751] 1.0000000000 0.9999999749 0.9999999949 0.9955037268 1.0000000000
##  [756] 0.9999695684 0.0044962732 0.9999995436 0.3100255189 0.9999962734
##  [761] 0.9997965730 0.7310585786 0.9988874640 0.8455347349 1.0000000000
##  [766] 0.0629733561 0.9955037268 0.9999999542 0.8175744762 1.0000000000
##  [771] 1.0000000000 1.0000000000 0.9999954483 0.9996293939 0.0629733561
##  [776] 0.9852259683 0.9241418200 0.9999995436 1.0000000000 0.9999954483
##  [781] 1.0000000000 0.9999999975 0.9989932292 0.9999999887 0.9996293939
##  [786] 0.9975273768 0.0024726232 0.0629733561 0.9999888046 0.9999997949
##  [791] 0.0758581800 1.0000000000 0.0044962732 0.9999999875 0.9370266439
##  [796] 0.9900481981 0.9918374288 0.9999999989 1.0000000000 0.9999996264
##  [801] 0.9991755753 0.0030184163 0.9999944405 1.0000000000 0.9999979548
##  [806] 0.9999999246 0.9995473778 0.9999994426 0.9644288107 0.9999695684
##  [811] 0.9999999999 0.9999917062 0.9999997949 0.6456563062 0.9999944405
##  [816] 0.9999999998 0.1090968212 0.9999999995 0.9999750846 0.9999991685
##  [821] 0.9999695684 0.9996293939 0.9999695684 0.9999986290 0.9989932292
##  [826] 0.9836975006 0.4013123399 0.9995473778 0.0521535631 0.9999998321
##  [831] 0.9993249173 0.9999962734 0.9999999994 0.9999998321 0.9999954483
##  [836] 0.9999999794 0.9999944405 0.9999999999 0.0044962732 0.9998989708
##  [841] 0.0002484551 0.9998989708 0.0036842399 0.9900481981 0.9478464369
##  [846] 0.0054862989 0.0036842399 0.9945137011 0.4501660027 0.9999996264
##  [851] 0.9955037268 0.9975273768 0.9999983255 0.9088770390 0.9999995436
##  [856] 0.9999917062 0.0002484551 0.5986876601 0.9999445515 1.0000000000
##  [861] 0.9999999542 0.9999999986 0.9999992476 0.9999996264 0.9706877692
##  [866] 0.0024726232 0.9955037268 0.6456563062 0.9963157601 0.9999966280
##  [871] 0.9758729786 0.8698915256 0.9999969489 0.9706877692 0.9999387203
##  [876] 0.9852259683 0.9999986290 0.9999999693 0.4501660027 0.9999954483
##  [881] 0.9999999625 1.0000000000 0.9999999989 0.9999172828 0.9999994426
##  [886] 0.8909031788 0.9999999999 0.9996965530 0.0054862989 0.9999932096
##  [891] 0.9999962734 0.9999917062 1.0000000000 0.9820137900 0.9999999983
##  [896] 0.9999995436 1.0000000000 0.9969815837 0.9918374288 0.9999695684
##  [901] 1.0000000000 0.9984988177 0.9975273768 0.9996293939 0.9999997949
##  [906] 0.9999996941 0.9999997949 0.5000000000 0.9955037268 0.0293122308
##  [911] 0.9999999079 0.9999999998 1.0000000000 0.9999998321 0.5000000000
##  [916] 0.0036842399 0.9969815837 0.9999999996 0.3100255189 0.9999995436
##  [921] 0.9478464369 0.9706877692 0.9999938558 1.0000000000 0.9999999991
##  [926] 0.0030184163 0.9999944405 0.9999999382 0.9993249173 0.9999992476
##  [931] 0.9999998875 0.9999988776 0.9999898700 0.9998334419 0.9999999848
##  [936] 0.0054862989 0.9998766054 0.9999999908 0.9945137011 0.9999962734
##  [941] 0.5000000000 0.9998883467 0.9995473778 1.0000000000 0.9996293939
##  [946] 0.9996965530 0.9995473778 0.8698915256 0.9999999999 0.9999695684
##  [951] 0.9999999749 0.9999949696 0.9878715650 0.9979746796 0.9999996264
##  [956] 0.9999695684 0.9568927451 0.0629733561 0.9991755753 0.3100255189
##  [961] 0.9999999862 0.4013123399 0.9993249173 0.9998989708 0.9998989708
##  [966] 0.9987706014 0.9999387203 0.9999863260 0.9999999986 0.9992539712
##  [971] 0.9999832986 0.0355711893 0.9999628311 0.9998989708 1.0000000000
##  [976] 0.5986876601 0.9999999995 0.9088770390 0.9644288107 0.9993249173
##  [981] 0.9933071491 0.9955037268 0.0521535631 0.8175744762 0.9999954483
##  [986] 0.9999999986 0.9370266439 0.9996293939 0.9918374288 1.0000000000
##  [991] 0.9852259683 0.9999998625 0.9999999999 0.9999750846 1.0000000000
##  [996] 0.9963157601 0.9900481981 0.9999999992 0.0044962732 0.9568927451
set.seed(3)
y <- rbinom(n,1,p)
y
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [38] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1
##   [75] 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
##  [112] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1
##  [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [186] 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1
##  [223] 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [260] 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
##  [297] 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
##  [334] 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
##  [371] 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
##  [408] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1
##  [445] 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [482] 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
##  [519] 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1
##  [556] 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
##  [593] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1
##  [630] 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
##  [667] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1
##  [704] 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
##  [778] 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0
##  [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1
##  [852] 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
##  [889] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
##  [926] 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0
##  [963] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
## [1000] 1
datagab <- data.frame(y,x1,x2,x3,x4)
datagab
##      y x1 x2 x3 x4
## 1    1  1  0  1 10
## 2    1  3  0  1  8
## 3    1  0  1  0  8
## 4    1  3  0  1  3
## 5    1  2  0  0  9
## 6    1  0  0  0  9
## 7    1  3  1  0  3
## 8    1  2  0  1  4
## 9    1  1  1  0  3
## 10   1  1  0  0 10
## 11   1  1  1  1  7
## 12   1  3  1  1  5
## 13   1  1  0  0 10
## 14   1  5  0  0  7
## 15   1  3  1  0  6
## 16   0  0  1  0  1
## 17   1  2  0  0  9
## 18   1  2  0  1 10
## 19   0  0  0  0  3
## 20   1  2  1  1  4
## 21   0  0  1  0  2
## 22   1  4  1  0 10
## 23   1  1  1  0 10
## 24   1  0  1  0  7
## 25   1  2  0  1  3
## 26   1  3  0  0  8
## 27   1  1  1  1  4
## 28   1  4  1  0  2
## 29   1  0  1  1  6
## 30   1  0  0  1  6
## 31   1  2  0  0  9
## 32   1  0  1  1 10
## 33   1  2  0  0  9
## 34   1  8  1  0  4
## 35   1  2  1  0  9
## 36   1  3  1  1  5
## 37   1  0  0  0  6
## 38   1  4  1  1  1
## 39   1  2  1  1  5
## 40   0  1  0  1  1
## 41   1 13  0  1 10
## 42   1  2  1  0  7
## 43   1  0  1  1  4
## 44   1  2  1  1  1
## 45   1  4  1  1  7
## 46   1  3  0  0  6
## 47   1  3  1  0  3
## 48   1  2  1  1  8
## 49   1  1  0  1  9
## 50   1  2  0  1  1
## 51   1  3  0  1  3
## 52   1  3  0  1  3
## 53   1  0  0  0  6
## 54   1  2  0  0  6
## 55   1  2  1  1  7
## 56   1  3  0  1  7
## 57   1  3  0  1  7
## 58   1  2  0  0  7
## 59   1  5  1  0  5
## 60   1  2  0  1  1
## 61   0  1  0  0  3
## 62   0  0  1  0  1
## 63   1  3  1  0  4
## 64   1  8  1  0  3
## 65   0  1  0  1  1
## 66   1  6  0  0  9
## 67   0  1  0  0  1
## 68   1  6  0  0 10
## 69   0  0  0  0  2
## 70   1  4  1  0  8
## 71   1  2  0  1  2
## 72   1  3  0  1  3
## 73   1  1  1  0  7
## 74   1  1  1  0  6
## 75   1  5  1  1  6
## 76   1  0  1  0  7
## 77   1  1  1  0  5
## 78   1  1  1  1  6
## 79   1  0  1  0 10
## 80   1  0  0  1  8
## 81   1  1  0  0  8
## 82   0  0  1  1  2
## 83   1  6  1  0  9
## 84   1  0  1  0  6
## 85   1  2  0  0  6
## 86   0  0  1  0  2
## 87   1  2  1  1  6
## 88   1  1  0  1  3
## 89   1  1  0  1  9
## 90   1  1  1  1  3
## 91   1  6  1  1  5
## 92   1  4  0  1  4
## 93   1  2  0  1  8
## 94   1  0  0  1  7
## 95   1  2  1  1  2
## 96   1  2  0  0  4
## 97   1  0  1  1 10
## 98   1  3  0  0  2
## 99   1  0  0  1  8
## 100  1  1  1  1 10
## 101  1  2  0  1 10
## 102  1  1  0  0  9
## 103  1  0  0  1  7
## 104  1  3  0  0  2
## 105  1  3  1  1 10
## 106  1  4  1  0  2
## 107  1  0  1  1  7
## 108  1  3  1  0  5
## 109  1  2  0  1  6
## 110  0  1  1  1  1
## 111  1  4  1  0  6
## 112  1  3  1  1 10
## 113  1  0  0  1  9
## 114  1  2  0  1  3
## 115  1  2  1  1  7
## 116  1  0  0  1 10
## 117  1 13  1  1  6
## 118  1  1  1  1  8
## 119  1  1  0  0 10
## 120  1  0  1  1  9
## 121  1  3  0  0  4
## 122  0  1  0  1  1
## 123  1  1  0  1  8
## 124  1  2  1  1 10
## 125  1  5  0  1  1
## 126  1 12  0  0  7
## 127  1  5  1  1  8
## 128  1  3  1  1  3
## 129  1  1  1  1  5
## 130  0  0  0  0  3
## 131  1  1  0  0  4
## 132  0  2  1  1  1
## 133  0  1  1  1  2
## 134  1  0  0  1  6
## 135  1  7  1  0  9
## 136  1  1  0  0  9
## 137  0  0  0  1  2
## 138  1  4  0  1  4
## 139  1  2  0  1  1
## 140  0  0  1  0  3
## 141  1  0  1  1  9
## 142  1  2  0  1  3
## 143  1  3  0  1  2
## 144  1  2  1  1  3
## 145  1  2  0  0  2
## 146  1  1  1  0  7
## 147  1  6  1  1  5
## 148  1  2  0  0  3
## 149  1  1  0  0  7
## 150  1  5  0  0 10
## 151  1  1  1  1  6
## 152  1  2  1  0  5
## 153  1  2  0  0  9
## 154  1  2  0  0  8
## 155  1  6  1  0  7
## 156  1  0  1  1  8
## 157  1  3  1  1  1
## 158  1  2  1  0  5
## 159  1  2  0  1  8
## 160  1  5  1  1  8
## 161  1  5  1  0  1
## 162  1  1  1  0  7
## 163  1  2  0  0  5
## 164  1  5  0  0  7
## 165  0  1  0  1  1
## 166  1  7  0  0  5
## 167  1  6  0  0  4
## 168  1  6  1  1  4
## 169  1  3  1  0  7
## 170  1  1  1  1  9
## 171  1  1  0  1  4
## 172  1  3  0  1  7
## 173  1  2  1  1  7
## 174  1  5  1  0  3
## 175  1  0  1  0  5
## 176  1  2  0  1  5
## 177  1  0  1  0  8
## 178  1  8  1  1  5
## 179  1  9  0  1  9
## 180  1  6  1  0  1
## 181  1  9  0  1  5
## 182  1  1  1  1  5
## 183  1  0  1  1  8
## 184  1  1  1  0  5
## 185  1  3  0  0  9
## 186  1  1  0  0  6
## 187  1  1  0  1  9
## 188  1  2  0  1  3
## 189  1  1  0  1 10
## 190  1  4  1  1  7
## 191  1  3  1  0  2
## 192  1  1  0  1  5
## 193  1  3  0  1  2
## 194  1  2  1  0  6
## 195  1  4  1  0  8
## 196  1  5  0  0  7
## 197  1  1  0  0  8
## 198  0  0  1  1  2
## 199  1  9  0  0 10
## 200  1  3  1  1  3
## 201  1  0  0  1  6
## 202  1  1  1  1  3
## 203  1  2  1  0  1
## 204  1  2  1  1  7
## 205  1  1  0  1  8
## 206  1  1  1  0  5
## 207  1  4  1  1  9
## 208  1  2  1  0  2
## 209  1  2  0  0  2
## 210  1  3  0  1  7
## 211  0  2  0  0  1
## 212  1  2  1  1  6
## 213  1  3  0  0  6
## 214  1  2  0  0 10
## 215  1  0  0  1 10
## 216  1  1  1  1  2
## 217  1  5  1  1  5
## 218  0  0  1  0  2
## 219  1  5  0  0  7
## 220  1  4  0  1  9
## 221  1  4  1  1  8
## 222  1  1  0  1 10
## 223  1  1  1  1  4
## 224  1  1  1  1  9
## 225  1  1  0  0 10
## 226  1  2  1  0  7
## 227  1  1  0  1  6
## 228  1  4  0  1  4
## 229  1  8  0  0  1
## 230  1  2  0  1  7
## 231  1  1  1  0  6
## 232  1  1  0  1  6
## 233  0  2  1  0  1
## 234  1  2  1  1  9
## 235  1  0  0  0  7
## 236  0  1  0  1  1
## 237  1  7  0  1  2
## 238  1  1  1  1  9
## 239  1  2  1  1  2
## 240  1  4  1  1  9
## 241  1  3  0  1  3
## 242  1  7  1  0  6
## 243  1  1  1  1  4
## 244  1  0  1  0  5
## 245  1  3  0  0  5
## 246  1  5  1  0  6
## 247  1  5  1  1  1
## 248  1  3  0  0  3
## 249  1  2  0  1  2
## 250  1  4  0  0 10
## 251  1  1  0  0  4
## 252  1  4  1  0  2
## 253  1  1  0  1  5
## 254  1  2  0  1  8
## 255  1  0  1  1  6
## 256  1  2  1  1  2
## 257  1  2  0  1  4
## 258  1  1  0  1  8
## 259  1  1  1  1  2
## 260  1  3  1  0  1
## 261  1  1  0  1  3
## 262  1  1  1  1  3
## 263  1  4  0  1  8
## 264  1  1  1  1  2
## 265  1  5  1  0  4
## 266  0  0  1  0  2
## 267  1  2  0  0  4
## 268  1  4  0  0  7
## 269  1  2  1  1  6
## 270  1  2  1  0  1
## 271  1  1  1  0  9
## 272  1  0  1  1  6
## 273  1  5  0  0  1
## 274  1  1  0  0  4
## 275  1  0  1  0  5
## 276  1  2  1  1  8
## 277  0  0  0  1  2
## 278  1  1  0  0 10
## 279  1  2  1  0  1
## 280  1  3  0  0  9
## 281  1  2  0  1  3
## 282  1  4  0  1  7
## 283  1  3  0  1  6
## 284  1  5  0  1  7
## 285  1  1  1  0 10
## 286  1  2  1  1  4
## 287  1  4  1  1  8
## 288  1  1  1  0  7
## 289  0  0  0  1  1
## 290  1  3  0  0  8
## 291  1  1  0  1  7
## 292  1  1  1  1  6
## 293  1  5  0  1  2
## 294  0  1  1  0  1
## 295  1  7  0  0  5
## 296  1  0  0  1  9
## 297  1  2  1  0  5
## 298  1  7  1  0  9
## 299  1  3  1  1  8
## 300  0  0  1  1  2
## 301  1  0  1  0  8
## 302  1  1  1  0  7
## 303  1  4  1  0 10
## 304  0  0  1  1  2
## 305  1  2  0  0  8
## 306  1  3  1  1  3
## 307  1  6  0  1  1
## 308  1  4  1  1  8
## 309  1  2  1  0  9
## 310  1  3  1  1  1
## 311  1  0  0  0  9
## 312  1  3  1  1  4
## 313  0  0  0  0  2
## 314  0  1  0  1  1
## 315  1  2  0  1  4
## 316  0  0  1  1  2
## 317  1  2  1  0 10
## 318  1  1  1  0  4
## 319  1  0  1  1  8
## 320  1  0  1  1 10
## 321  1  2  0  1  9
## 322  1  5  1  0 10
## 323  1  4  1  0  5
## 324  1  0  1  0  9
## 325  1  9  0  1  7
## 326  1 10  1  0  7
## 327  0  1  1  1  1
## 328  1  2  1  1  8
## 329  1  1  1  1  8
## 330  1  7  1  0 10
## 331  1  1  0  1 10
## 332  1  1  0  1  6
## 333  1  3  0  1  6
## 334  1  5  1  1 10
## 335  1  3  0  1  6
## 336  1  1  0  0 10
## 337  1  1  1  1  3
## 338  1  4  0  1  5
## 339  1  2  1  0  6
## 340  1  2  1  1  2
## 341  1  2  1  1  9
## 342  1  4  0  0  6
## 343  1  1  1  1 10
## 344  0  2  0  0  1
## 345  0  1  0  0  2
## 346  1  0  0  0  9
## 347  0  1  1  1  2
## 348  0  0  1  1  3
## 349  0  0  0  0  1
## 350  1  3  1  0  8
## 351  1  0  0  0  5
## 352  0  1  0  0  1
## 353  1  9  1  1  6
## 354  1  3  0  1 10
## 355  1  5  0  1  9
## 356  1  4  0  1  5
## 357  1  2  1  1  5
## 358  1  5  0  1  2
## 359  0  1  1  0  3
## 360  1  3  0  0  7
## 361  1  7  0  0  1
## 362  1  1  0  0  5
## 363  1  5  1  0  1
## 364  1  3  0  0  1
## 365  1  6  1  0  1
## 366  1  1  1  0  5
## 367  1  5  0  0  8
## 368  1  4  0  1  4
## 369  1  3  1  0  4
## 370  1  2  1  0  7
## 371  1  2  1  0  7
## 372  1  3  1  0  6
## 373  0  1  0  1  1
## 374  0  2  0  0  1
## 375  1  4  0  0  6
## 376  1  0  0  1  9
## 377  1  5  0  0  2
## 378  1  3  0  1  5
## 379  0  1  0  1  2
## 380  1  9  1  0  7
## 381  1  1  0  1  9
## 382  1  2  0  1  2
## 383  0  0  0  1  2
## 384  1  1  0  0 10
## 385  1  1  1  0 10
## 386  1  1  1  0  4
## 387  1  2  0  0  3
## 388  1  0  1  1  4
## 389  1  3  1  0  3
## 390  1  0  1  1 10
## 391  1  7  0  0  1
## 392  1  8  0  1  2
## 393  1  3  1  0  2
## 394  1  7  0  0  7
## 395  1  2  1  0  7
## 396  1  4  1  1  2
## 397  0  2  0  0  1
## 398  1  6  0  0  7
## 399  1  0  1  0  7
## 400  1  2  0  1 10
## 401  1  4  1  0  8
## 402  1  1  0  0  8
## 403  1  4  0  0  2
## 404  1  3  0  0  9
## 405  1  0  1  1 10
## 406  1  3  1  0  6
## 407  1  1  1  0 10
## 408  0  1  1  0  2
## 409  1  1  1  0  5
## 410  1  1  0  1  9
## 411  1  2  0  1  7
## 412  1  0  1  1  8
## 413  1  2  0  1  4
## 414  1  0  1  1  5
## 415  1  1  0  0  8
## 416  1  4  1  0  5
## 417  1  4  0  1  9
## 418  1  5  1  0  5
## 419  1  1  1  1  3
## 420  1  1  1  1  4
## 421  1  1  1  0  2
## 422  1  3  1  0  5
## 423  1  4  1  1  8
## 424  0  0  1  1  1
## 425  1  1  0  1  5
## 426  1  0  0  1  8
## 427  1  0  0  1  9
## 428  1  3  1  1 10
## 429  1  1  0  0 10
## 430  1  4  0  0  3
## 431  1  0  1  1  9
## 432  1  1  0  0  6
## 433  1  2  0  1  9
## 434  1  2  0  0  8
## 435  1  1  0  1  5
## 436  1  2  1  1  8
## 437  1  1  1  0 10
## 438  1  8  1  1  4
## 439  1  1  0  1  3
## 440  0  0  1  0  4
## 441  0  0  0  1  2
## 442  1  9  0  1  8
## 443  1  1  0  0  8
## 444  1  4  1  1  7
## 445  0  0  1  0  3
## 446  1  0  1  0  6
## 447  1  3  1  0  1
## 448  1  3  0  1  3
## 449  1  6  1  0  7
## 450  1  4  0  1  6
## 451  0  2  0  1  2
## 452  1  0  1  0  8
## 453  0  0  1  0  1
## 454  0  1  1  0  1
## 455  1  3  0  0  4
## 456  1  0  1  1  5
## 457  1  4  1  0  6
## 458  0  2  1  0  1
## 459  1  1  0  0  2
## 460  0  0  0  0  4
## 461  0  1  1  1  1
## 462  1  3  1  1  4
## 463  0  1  1  1  2
## 464  1  1  1  1  5
## 465  1  9  0  1  9
## 466  1  4  1  1  4
## 467  1  0  0  1  4
## 468  1  2  0  1  8
## 469  1  1  0  1  9
## 470  1  3  0  1  4
## 471  1  2  0  0  8
## 472  1  5  0  0  3
## 473  1  3  0  1  7
## 474  1  1  0  0  8
## 475  1  0  1  1  7
## 476  1  1  1  0 10
## 477  1 10  1  1  1
## 478  1  2  1  0  4
## 479  1  0  1  1  6
## 480  1  4  1  0  8
## 481  1  1  0  1  4
## 482  1  0  0  0  9
## 483  1  3  1  1  3
## 484  1  4  0  1  1
## 485  1  2  0  1  4
## 486  1  0  0  1  5
## 487  1  3  0  1  1
## 488  1  9  1  0  6
## 489  1  2  1  1 10
## 490  0  0  0  1  2
## 491  1  2  1  0 10
## 492  1  2  0  1  8
## 493  1  3  0  1  7
## 494  1  1  0  1  8
## 495  1  3  0  0  5
## 496  1  0  1  1  5
## 497  1  2  0  0  7
## 498  1  0  0  1  6
## 499  0  0  1  1  2
## 500  1  1  0  0  9
## 501  1  3  0  0  4
## 502  1  8  1  1 10
## 503  1  1  0  1  9
## 504  1  3  0  0  8
## 505  1  3  0  1  3
## 506  1  1  0  1  6
## 507  1  4  1  0  9
## 508  1  0  0  1  7
## 509  1  1  1  0  7
## 510  1  4  1  0  7
## 511  1  3  0  0 10
## 512  1  4  0  0 10
## 513  1  1  0  1  9
## 514  0  0  0  1  3
## 515  1  2  1  1  4
## 516  1  7  0  0  3
## 517  1  0  0  0  7
## 518  1  4  0  1  4
## 519  1  5  0  0  9
## 520  1  1  1  1  5
## 521  1  1  1  1  9
## 522  1 11  1  0  9
## 523  0  0  1  0  2
## 524  0  1  1  0  1
## 525  1  1  0  0  8
## 526  1  2  0  0  6
## 527  1 10  1  0  5
## 528  1  0  1  0  5
## 529  1  8  1  1  3
## 530  1  2  0  1  8
## 531  1  2  1  0  7
## 532  1  3  1  0  6
## 533  1  2  1  0  9
## 534  1  3  1  1  5
## 535  1  4  0  1  5
## 536  1  3  0  0  1
## 537  1  7  0  1  4
## 538  1  4  1  0  6
## 539  1  2  1  0  8
## 540  1  9  1  1  2
## 541  0  0  1  1  3
## 542  1  8  1  1  8
## 543  1  3  1  1  1
## 544  1  3  1  0  3
## 545  1  4  1  1  2
## 546  1  0  1  1  8
## 547  1  1  0  1  9
## 548  1  0  1  1  6
## 549  1  1  1  0 10
## 550  1  1  1  0  5
## 551  1  1  0  1  9
## 552  0  0  1  0  3
## 553  1  1  0  1  7
## 554  0  0  1  1  2
## 555  1  1  1  0  8
## 556  1  0  1  1  6
## 557  1  1  1  1  6
## 558  0  1  0  0  1
## 559  1  4  0  1  9
## 560  1  4  0  0  8
## 561  1  3  1  1  9
## 562  1  3  0  1  6
## 563  1  5  1  0  9
## 564  1  2  1  0  4
## 565  1  1  1  1 10
## 566  1  0  0  1  5
## 567  0  1  1  0  1
## 568  1  2  1  0  5
## 569  1  5  1  1 10
## 570  1  1  1  0  7
## 571  1  8  1  0  8
## 572  1  1  0  0 10
## 573  1  7  1  1  2
## 574  1  1  0  1  4
## 575  1  0  0  1  7
## 576  1  0  0  0 10
## 577  1  9  1  0  7
## 578  1  4  0  1  7
## 579  1  1  1  0 10
## 580  1  0  0  0 10
## 581  1  0  1  0  9
## 582  1  0  1  1  6
## 583  1  1  0  1  7
## 584  1  5  1  0 10
## 585  1  1  0  0  7
## 586  1 11  1  1  8
## 587  1  0  1  0  6
## 588  1  1  1  0  8
## 589  1  0  0  1  3
## 590  1  3  1  0  9
## 591  1  1  0  0  9
## 592  0  0  0  0  5
## 593  0  1  1  0  1
## 594  1  1  1  0  9
## 595  1  2  1  0  3
## 596  1 13  1  1  4
## 597  1  1  1  0  3
## 598  1  2  0  0  8
## 599  1  1  0  1  6
## 600  1  4  0  0  9
## 601  1  3  0  1  2
## 602  1  1  1  1  8
## 603  1  0  0  1  5
## 604  1  1  0  0 10
## 605  1  2  0  0  4
## 606  1  0  1  1  6
## 607  1  1  0  0  5
## 608  1  1  1  1  9
## 609  1  5  1  0  2
## 610  1  1  0  0  7
## 611  1  1  1  1  4
## 612  1  2  0  1  6
## 613  1  0  1  1  6
## 614  1  7  1  0  5
## 615  1  0  1  0  5
## 616  1  4  0  1  1
## 617  1  1  0  0  8
## 618  0  1  0  1  1
## 619  1  0  1  1  7
## 620  1  1  0  1 10
## 621  1  2  1  1  4
## 622  1  3  1  1 10
## 623  1  6  0  0  4
## 624  1  3  0  1  8
## 625  1  0  0  1  8
## 626  1  5  1  0  8
## 627  0  2  0  0  2
## 628  1  8  1  1  5
## 629  1  2  0  0  7
## 630  0  1  0  0  1
## 631  1  1  1  1  8
## 632  1  1  1  0  4
## 633  1  1  0  0  6
## 634  1  1  0  0 10
## 635  1  1  0  1 10
## 636  1  3  0  1  6
## 637  0  0  0  1  1
## 638  1  2  1  0  6
## 639  1  6  1  0  1
## 640  0  0  0  0  2
## 641  0  1  0  1  1
## 642  1  3  1  1  4
## 643  1  3  1  0  6
## 644  0  1  0  1  1
## 645  1  6  1  0  8
## 646  1  4  0  1  6
## 647  0  0  0  0  3
## 648  1  1  1  1  7
## 649  1  3  1  1  4
## 650  1  1  0  1  3
## 651  1  4  1  0  7
## 652  1  5  0  0  8
## 653  1  3  1  0  9
## 654  1  2  1  0 10
## 655  1  2  1  1  9
## 656  1  4  0  0  9
## 657  1  7  1  1  7
## 658  1  0  1  1  9
## 659  1  1  0  0  6
## 660  0  1  0  0  3
## 661  1  0  0  1  9
## 662  1  4  0  1  7
## 663  1 10  1  1  6
## 664  1  1  1  0  9
## 665  1  3  1  0 10
## 666  1  2  0  0  8
## 667  0  1  1  0  1
## 668  1  1  0  1  5
## 669  1  4  1  0  6
## 670  1  1  1  0 10
## 671  1  1  0  1 10
## 672  1  4  0  0  7
## 673  1  3  0  1  3
## 674  1  1  0  1  5
## 675  1  2  0  1  5
## 676  1  1  0  1  5
## 677  1  4  0  1 10
## 678  1  3  1  0  5
## 679  1  4  0  0  9
## 680  1  1  0  0  6
## 681  0  1  1  0  1
## 682  1  0  0  1 10
## 683  1  1  0  0  5
## 684  1  0  1  1  7
## 685  1  4  1  1 10
## 686  0  0  1  0  1
## 687  1  1  1  0  7
## 688  1  2  1  1  6
## 689  1  4  0  1  7
## 690  1  1  1  1 10
## 691  1  3  1  1  6
## 692  1  4  1  1  1
## 693  1  3  0  0  7
## 694  1  5  0  0  6
## 695  1  3  1  1  2
## 696  1  1  1  0  7
## 697  1  1  1  0  7
## 698  0  0  0  0  1
## 699  1  1  0  1  5
## 700  0  0  1  0  1
## 701  1  1  0  0 10
## 702  1  3  1  1  2
## 703  1  0  1  1  5
## 704  1  5  0  0  3
## 705  0  0  0  0  1
## 706  1  1  0  1  3
## 707  1  3  0  0  3
## 708  1  0  1  1  5
## 709  0  1  1  0  1
## 710  1  0  0  1  6
## 711  1  2  0  1  4
## 712  1  8  1  1  7
## 713  1  7  1  0  8
## 714  1  0  1  1  6
## 715  1  1  0  1 10
## 716  1 13  0  1  2
## 717  1  1  1  0  6
## 718  1  0  0  0 10
## 719  1  3  0  1  5
## 720  1 10  1  1  8
## 721  1  1  0  0  8
## 722  1  1  0  1  6
## 723  1  1  1  1  5
## 724  1  1  0  1  4
## 725  0  1  1  0  1
## 726  1  9  0  0  2
## 727  1  1  1  0  4
## 728  1  5  1  0 10
## 729  1  0  1  1  7
## 730  1  5  1  1  6
## 731  1  1  0  1 10
## 732  1  4  0  0  9
## 733  1  1  0  0  4
## 734  1  0  1  1  3
## 735  1  3  1  0  2
## 736  1  0  1  1 10
## 737  1  1  0  1  3
## 738  1  7  1  1  2
## 739  1  4  1  1  2
## 740  1  2  1  1  5
## 741  1  0  0  1  6
## 742  1  1  1  0  5
## 743  1  6  1  1  5
## 744  1  2  1  1  7
## 745  1  0  1  0 10
## 746  1  9  1  0  6
## 747  1  6  1  1  8
## 748  1  2  0  0  2
## 749  1  9  0  1  9
## 750  1  1  1  0  3
## 751  1  4  0  0 10
## 752  1  1  1  1  9
## 753  1  4  1  0  7
## 754  1  2  0  1  3
## 755  1  6  1  1  6
## 756  1  2  0  1  5
## 757  0  1  0  0  1
## 758  1  1  0  0  9
## 759  0  0  0  1  3
## 760  1  1  1  1  7
## 761  1  3  0  1  3
## 762  1  3  1  0  1
## 763  1  4  1  1  1
## 764  1  0  0  1  4
## 765  1  6  0  1  8
## 766  0  1  1  0  2
## 767  1  2  0  1  3
## 768  1  0  1  1 10
## 769  1  0  0  0  5
## 770  1  6  1  1  6
## 771  1  8  1  1  8
## 772  1  4  0  1 10
## 773  1  1  0  1  7
## 774  1  2  1  0  5
## 775  1  1  0  1  1
## 776  1  0  1  0  6
## 777  1  1  1  1  3
## 778  1  1  0  0  9
## 779  1  5  0  1  9
## 780  1  1  0  1  7
## 781  1  7  0  1  8
## 782  1  1  0  1 10
## 783  1  0  1  1  6
## 784  1  3  0  0  8
## 785  1  2  1  0  5
## 786  1  3  1  0  3
## 787  0  0  0  0  2
## 788  0  1  0  1  1
## 789  1  4  0  0  4
## 790  1  2  1  0  8
## 791  0  1  1  1  1
## 792  1 10  0  0  5
## 793  0  1  0  0  1
## 794  1  7  0  0  3
## 795  1  2  0  0  3
## 796  1  1  0  0  5
## 797  1  1  0  1  4
## 798  1  2  1  1  9
## 799  1  5  0  1  8
## 800  1  1  1  0  9
## 801  1  1  0  0  6
## 802  0  0  0  1  1
## 803  1  1  0  0  8
## 804  1  6  1  1  9
## 805  1  2  1  1  6
## 806  1  4  0  0  6
## 807  1  2  0  0  5
## 808  1  0  1  1  9
## 809  1  3  0  0  2
## 810  1  2  1  0  6
## 811  1  3  1  0 10
## 812  1  0  1  0  9
## 813  1  2  0  1  7
## 814  0  2  1  1  1
## 815  1  1  0  0  8
## 816  1  6  0  0  6
## 817  1  2  1  0  1
## 818  1  4  0  0  8
## 819  1  2  1  1  5
## 820  1  0  0  0 10
## 821  1  2  1  0  6
## 822  1  2  0  1  4
## 823  1  2  1  0  6
## 824  1  3  1  0  6
## 825  1  0  1  1  6
## 826  1  4  1  0  1
## 827  1  1  0  0  3
## 828  1  2  0  0  5
## 829  1  1  0  0  2
## 830  1  2  1  1  7
## 831  1  1  0  1  5
## 832  1  1  1  1  7
## 833  1  3  1  1  8
## 834  1  2  1  1  7
## 835  1  1  0  1  7
## 836  1  2  0  0  9
## 837  1  1  0  0  8
## 838  1  2  1  1 10
## 839  0  1  0  0  1
## 840  1  0  1  0  8
## 841  0  0  1  0  1
## 842  1  0  1  0  8
## 843  0  0  1  1  1
## 844  1  1  0  0  5
## 845  1  2  0  1  2
## 846  0  1  1  0  1
## 847  0  0  1  1  1
## 848  1  2  0  0  4
## 849  1  1  1  0  3
## 850  1  1  0  1  8
## 851  1  2  1  0  4
## 852  1  3  0  1  2
## 853  1  3  0  0  6
## 854  1  1  0  1  3
## 855  1  1  0  0  9
## 856  1  0  1  0  9
## 857  0  0  1  0  1
## 858  0  2  0  1  1
## 859  1  1  0  1  6
## 860  1  7  1  0  9
## 861  1  0  1  1 10
## 862  1  2  0  1  9
## 863  1  4  0  1  4
## 864  1  1  1  0  9
## 865  1  3  1  0  2
## 866  0  0  0  0  2
## 867  1  2  0  1  3
## 868  1  2  1  1  1
## 869  1  2  1  1  3
## 870  1  6  0  0  2
## 871  1  3  1  1  1
## 872  1  0  1  1  4
## 873  1  2  0  0  7
## 874  1  3  1  0  2
## 875  1  5  1  0  2
## 876  1  0  1  0  6
## 877  1  3  1  0  6
## 878  1  1  0  1  9
## 879  0  1  0  1  2
## 880  1  1  1  0  8
## 881  1  1  0  0 10
## 882  1 10  1  1  9
## 883  1  2  1  1  9
## 884  1  0  1  1  7
## 885  1  0  1  1  9
## 886  1  1  0  0  4
## 887  1  3  0  1  9
## 888  1  2  1  1  4
## 889  0  1  1  0  1
## 890  1  0  1  1  8
## 891  1  1  1  1  7
## 892  1  0  1  0  9
## 893  1  6  0  0  9
## 894  1  0  0  0  6
## 895  1  2  0  0 10
## 896  1  1  0  0  9
## 897  1  7  0  1  6
## 898  1  3  0  0  3
## 899  1  1  1  0  5
## 900  1  2  0  1  5
## 901  1  7  0  0 10
## 902  1  0  0  0  7
## 903  1  3  0  1  2
## 904  1  2  1  0  5
## 905  1  2  1  0  8
## 906  1  1  1  1  8
## 907  1  2  1  0  8
## 908  0  1  1  1  2
## 909  1  2  0  1  3
## 910  0  0  0  0  3
## 911  1  3  1  1  6
## 912  1  6  0  0  6
## 913  1  9  1  0  6
## 914  1  2  1  1  7
## 915  1  1  1  1  2
## 916  0  0  1  1  1
## 917  1  3  0  0  3
## 918  1  4  0  1  7
## 919  0  0  0  1  3
## 920  1  1  0  0  9
## 921  1  2  1  0  3
## 922  1  3  0  1  1
## 923  1  5  0  0  3
## 924  1  6  1  1  9
## 925  1  3  0  0  9
## 926  0  0  1  0  2
## 927  1  1  0  0  8
## 928  1  4  1  0  6
## 929  1  1  1  0  6
## 930  1  4  1  0  5
## 931  1  3  0  1  6
## 932  1  3  1  1  5
## 933  1  0  0  0  9
## 934  1  3  1  1  3
## 935  1  6  1  1  3
## 936  0  1  1  0  1
## 937  1  0  0  0  8
## 938  1  3  1  0  8
## 939  1  2  0  0  4
## 940  1  1  1  1  7
## 941  1  1  1  1  2
## 942  1  4  1  0  3
## 943  1  2  0  0  5
## 944  1 12  0  1  6
## 945  1  2  1  0  5
## 946  1  2  1  1  4
## 947  1  2  0  0  5
## 948  1  0  1  1  4
## 949  1  2  0  1 10
## 950  1  2  0  1  5
## 951  1  1  1  1  9
## 952  1  5  1  0  3
## 953  1  0  1  1  5
## 954  1  3  1  1  2
## 955  1  1  1  0  9
## 956  1  2  1  0  6
## 957  1  2  1  1  2
## 958  0  1  0  1  1
## 959  1  1  0  0  6
## 960  0  0  1  0  4
## 961  1  2  1  1  8
## 962  0  1  0  0  3
## 963  1  1  1  0  6
## 964  1  0  1  0  8
## 965  1  0  1  0  8
## 966  1  0  1  0  7
## 967  1  5  0  1  1
## 968  1  3  1  1  4
## 969  1  2  0  1  9
## 970  1  5  1  0  1
## 971  1  3  1  0  5
## 972  0  0  0  1  2
## 973  1  2  0  0  6
## 974  1  0  1  0  8
## 975  1  8  0  1 10
## 976  1  2  1  0  2
## 977  1  8  1  0  3
## 978  1  1  1  0  4
## 979  1  3  0  0  2
## 980  1  1  1  0  6
## 981  1  1  1  1  4
## 982  1  2  1  0  4
## 983  0  1  0  0  2
## 984  0  0  0  0  5
## 985  1  1  1  0  8
## 986  1  2  1  0 10
## 987  1  2  0  0  3
## 988  1  2  1  0  5
## 989  1  1  0  1  4
## 990  1  4  1  1  8
## 991  1  0  0  1  5
## 992  1  3  0  0  7
## 993  1  2  1  1 10
## 994  1  2  1  1  5
## 995  1  3  0  1 10
## 996  1  2  1  1  3
## 997  1  1  0  0  5
## 998  1  7  0  1  3
## 999  0  1  0  0  1
## 1000 1  2  1  1  2

Analisis Regresi Logistik

modelreglog <- glm(y~x1+x2+x3+x4, family = binomial(link = "logit"), data = datagab)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -12.0184     1.6235  -7.403 1.33e-13 ***
## x1            3.9907     0.5605   7.120 1.08e-12 ***
## x2            1.0811     0.5067   2.134 0.032874 *  
## x3            1.9862     0.5435   3.654 0.000258 ***
## x4            2.7064     0.3490   7.754 8.88e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 729.86  on 999  degrees of freedom
## Residual deviance: 113.25  on 995  degrees of freedom
## AIC: 123.25
## 
## Number of Fisher Scoring iterations: 10

Dalam contoh di atas, variabel x1, x3, dan x4 memiliki nilai p masing-masing 1.08e-12, 0.000258, dan 8.88e-15, yang lebih kecil dari 0.05, sehingga kita dapat menyimpulkan bahwa keduanya signifikan terhadap model.