#Skenario Y : Total Penjualan Produk (bulan) X1 : Jumlah Iklan (Jumlah Iklan) X2 : Harga Produk (Rp) X3 : Promosi (ada promosi = 1, tidak ada promosi = 0)
Y : Total Penjualan Produk (bulan) Membangkitkan variabel X1 per unit selama 30 hari atau satu bulan dengan nilai tengah 8 dan banyak pembeli 37
set.seed(100)
n <- 37
u <- runif(n)
Y <- round(30*(-(log(1-u)/8)))
Y
## [1] 1 1 3 0 2 2 6 2 3 1 4 8 1 2 5 4 1 2 2 4 3 5 3 5 2
## [26] 1 6 8 3 1 3 10 2 12 4 8 1
##Membangkitkan data X1 X1 : Jumlah Iklan (Jumlah Iklan)
set.seed(238)
X1 <- round(rnorm(n,5,0.7),0)
X1
## [1] 5 5 4 4 6 6 5 4 5 4 5 5 5 4 5 4 5 5 6 5 6 6 5 4 6 6 5 5 5 5 5 5 5 4 5 6 5
X2 : Harga Produk (Rp)
set.seed(876)
X2 <- round(rnorm(n,34,0.7),3)
X2
## [1] 34.120 34.548 33.255 33.815 34.080 35.358 34.323 34.858 33.709 34.009
## [11] 34.808 34.586 34.173 33.359 34.264 33.015 33.743 34.089 33.406 33.898
## [21] 34.520 34.991 35.122 33.913 33.420 33.903 34.106 34.297 33.888 33.414
## [31] 34.255 33.739 33.737 34.136 34.167 33.482 35.704
X3 : Promosi Keterangan yang digunakan (ada promosi =1) dan (tidak ada promosi = 0)
set.seed(009)
X3 <- round(runif(n))
X3
## [1] 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1
Menentukan koefisien
b0 <- -12
b1 <- 1.4
b2 <- 0.1
b3 <- 3.7
set.seed(123)
datapendukung <- b0+(b1*X1)+(b2*X2)+(b3*X3)
datapendukung
## [1] -1.5880 -1.5452 -3.0745 -3.0185 -0.1920 -0.0642 -1.5677 -2.9142 2.0709
## [10] 0.7009 -1.5192 -1.5414 2.1173 -3.0641 -1.5736 0.6015 -1.6257 2.1089
## [19] -0.2594 -1.6102 3.5520 -0.1009 -1.4878 -3.0087 3.4420 3.4903 -1.5894
## [28] -1.5703 2.0888 2.0414 -1.5745 2.0739 -1.6263 0.7136 -1.5833 3.4482
## [37] 2.2704
P <- exp(datapendukung)/(1+exp(datapendukung))
P
## [1] 0.16966547 0.17578062 0.04417145 0.04659707 0.45214691 0.48395551
## [7] 0.17254452 0.05145605 0.88804247 0.66838728 0.17957935 0.17633185
## [13] 0.89257331 0.04461262 0.17170379 0.64599941 0.16442027 0.89176521
## [19] 0.43551121 0.16656085 0.97213166 0.47479638 0.18425217 0.04703438
## [25] 0.96899167 0.97041051 0.16946833 0.17217363 0.88980982 0.88507575
## [31] 0.17157583 0.88834040 0.16433785 0.67119614 0.17032863 0.96917742
## [37] 0.90639573
set.seed(3)
y <- rbinom(n,1,P)
y
## [1] 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1
datagab <- data.frame(y, X1, X2, X3)
datagab
## y X1 X2 X3
## 1 0 5 34.120 0
## 2 0 5 34.548 0
## 3 0 4 33.255 0
## 4 0 4 33.815 0
## 5 1 6 34.080 0
## 6 1 6 35.358 0
## 7 0 5 34.323 0
## 8 0 4 34.858 0
## 9 1 5 33.709 1
## 10 1 4 34.009 1
## 11 0 5 34.808 0
## 12 0 5 34.586 0
## 13 1 5 34.173 1
## 14 0 4 33.359 0
## 15 1 5 34.264 0
## 16 0 4 33.015 1
## 17 0 5 33.743 0
## 18 1 5 34.089 1
## 19 1 6 33.406 0
## 20 0 5 33.898 0
## 21 1 6 34.520 1
## 22 0 6 34.991 0
## 23 0 5 35.122 0
## 24 0 4 33.913 0
## 25 1 6 33.420 1
## 26 1 6 33.903 1
## 27 0 5 34.106 0
## 28 1 5 34.297 0
## 29 1 5 33.888 1
## 30 1 5 33.414 1
## 31 0 5 34.255 0
## 32 1 5 33.739 1
## 33 0 5 33.737 0
## 34 1 4 34.136 1
## 35 0 5 34.167 0
## 36 1 6 33.482 1
## 37 1 5 35.704 1
modelreglog <- glm(y~X1+X2+X3, family = binomial(link = logit), data = datagab)
summary(modelreglog)
##
## Call:
## glm(formula = y ~ X1 + X2 + X3, family = binomial(link = logit),
## data = datagab)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -25.7975 37.2955 -0.692 0.48912
## X1 3.1718 1.2772 2.483 0.01302 *
## X2 0.2345 1.0897 0.215 0.82963
## X3 6.0772 2.0159 3.015 0.00257 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 51.266 on 36 degrees of freedom
## Residual deviance: 20.127 on 33 degrees of freedom
## AIC: 28.127
##
## Number of Fisher Scoring iterations: 6