# Membangkitkan Data
## skenario
Y :Keputusan mendapatkan/tidak mendapatkan penghargaan film
X1 :Views (Jt)
X2 :Kategori Film (0:Series, 1:Movie)
X3 :Pendapat Kritikus (0:Bagus, 1:kurang bagus)
X4 :Rating (Skala 5)

# Membangkitkan Data X1
X1 :views (Jt)
Membangkitkan variabel X1 dengan jumlah views 0-200 dengan nilai tengah 2 dan banyak film adalah 100

X1

```r
set.seed(100)
n <- 100
u <- runif(n)
X1 <- round (200*(-(log(1-u)/2)))
X1
##   [1]  37  30  80   6  63  66 167  46  79  19  98 214  33  51 144 111  23  44
##  [19]  45 117  77 124  77 138  54  19 147 214  80  33  67 264  43 308 119 220
##  [37]  20  99 456  14  40 200 150 176  92  68 152 216  23  37  40  22  27  32
##  [55]  89  29  13  26  91  24  62 104 323 113  59  44  61  59  28 119  53  40
##  [73]  85 341 108  98 194 149 180  10  62  91 252 406   4  86 132  29  36 132
##  [91] 237  24  44  59 237  49  73  13   3 148

Membangkitkan Data X2

X2 :Kategori film Keterangan yang digunakan (0:Series, 1:Movie)

X2 <- round(runif(n))
X2
##   [1] 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0
##  [38] 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1
##  [75] 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1

Membangkitkan Data X3

X3 :Pendapat Kritikus Keterangan yang digunakan (0:Bagus , 1:Kurang bagus)

X3 <- round(runif(n))
X3
##   [1] 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0
##  [38] 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 0
##  [75] 1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 1 1 1

Membangkitkan Data X4

X3 : Data Rating dengan skala 5

X4 <- round(rnorm(n,4.5,0.6),2)
X4
##   [1] 5.12 5.49 4.49 4.49 4.65 4.30 4.43 4.44 4.66 4.58 4.35 4.54 4.39 4.98 4.50
##  [16] 4.12 4.35 4.09 4.62 5.01 4.88 4.62 4.45 4.67 4.47 3.27 4.72 4.28 5.26 5.80
##  [31] 3.76 4.85 4.57 4.19 4.87 4.92 4.44 4.32 3.85 4.13 4.36 4.35 5.07 4.34 5.64
##  [46] 4.24 5.45 4.60 3.85 4.85 4.52 4.29 5.01 4.81 5.11 3.89 4.16 3.89 2.69 4.70
##  [61] 5.24 4.90 3.70 3.99 3.43 5.24 4.30 3.92 5.03 4.35 3.59 4.49 4.52 4.60 4.75
##  [76] 4.12 4.88 3.78 5.31 4.14 4.77 4.87 4.32 3.54 4.30 4.15 4.27 5.01 4.91 4.64
##  [91] 4.07 6.07 3.52 3.54 4.70 6.14 4.30 3.75 4.24 6.03

Membangkitkan Data Y

menentukan koefisien

b0 <- -10
b1 <- 0.1
b2 <- 0.5
b3 <- 0.3
b4 <- 0.2
DataPendukung <- b0 + (b1*X1)+(b2*X2)+(b3*X3)+(b4*X4)
DataPendukung
##   [1] -5.276 -5.602 -0.802 -8.202 -2.270 -1.740  8.386 -3.712 -1.168 -6.684
##  [11]  1.170 13.108 -5.822 -3.904  5.800  2.224 -6.030 -3.982 -4.576  3.202
##  [21] -1.024  3.324 -1.110  5.534 -3.706 -7.146  6.144 12.756 -0.448 -5.540
##  [31] -2.248 17.870 -3.986 21.938  3.374 12.984 -7.112  1.064 36.670 -6.974
##  [41] -4.628 11.170  6.314  9.268  0.328 -1.552  7.090 12.520 -6.930 -5.330
##  [51] -4.596 -6.142 -6.298 -5.838  0.722 -5.522 -7.368 -6.122 -0.062 -5.860
##  [61] -2.252  2.180 23.040  2.398 -3.114 -4.252 -3.040 -2.816 -5.394  3.570
##  [71] -3.682 -4.802 -0.096 25.520  2.550  0.924 10.876  6.156  9.362 -7.672
##  [81] -2.846  0.574 16.564 31.808 -8.440 -0.270  4.354 -5.798 -5.418  4.628
##  [91] 15.014 -6.086 -4.896 -2.592 15.140 -3.872 -1.540 -7.150 -8.552  6.806
p <- exp(DataPendukung)/ (1 + exp(DataPendukung))
p
##   [1] 0.0050868331 0.0036769058 0.3095978621 0.0002740297 0.0936382122
##   [6] 0.1493129345 0.9997720144 0.0238460901 0.2372166839 0.0012492024
##  [11] 0.7631450157 0.9999979711 0.0029529302 0.0197626683 0.9969815837
##  [16] 0.9023841114 0.0023997215 0.0183069125 0.0101910708 0.9609094714
##  [21] 0.2642489817 0.9652430372 0.2478708886 0.9960653855 0.0239861546
##  [26] 0.0007873894 0.9978582757 0.9999971150 0.3898363891 0.0039111695
##  [31] 0.0955221205 0.9999999827 0.0182351638 0.9999999997 0.9668820154
##  [36] 0.9999977032 0.0008145987 0.7434542081 1.0000000000 0.0009350267
##  [41] 0.0096796762 0.9999859096 0.9981924974 0.9999056118 0.5812726666
##  [46] 0.1747975937 0.9991672966 0.9999963472 0.0009770453 0.0048207181
##  [51] 0.0099912903 0.0021460028 0.0018366017 0.0029061955 0.6730472786
##  [56] 0.0039819251 0.0006307311 0.0021892601 0.4845049633 0.0028431372
##  [61] 0.0951770886 0.8984390721 0.9999999999 0.9166746663 0.0425334484
##  [66] 0.0140359223 0.0456511708 0.0564656650 0.0045232095 0.9726151890
##  [71] 0.0245544797 0.0081463952 0.4760184150 1.0000000000 0.9275735146
##  [76] 0.7158564317 0.9999810938 0.9978837687 0.9999140793 0.0004654688
##  [81] 0.0548884510 0.6396856410 0.9999999360 1.0000000000 0.0002160035
##  [86] 0.4329070950 0.9873078725 0.0030244409 0.0044164185 0.9903203238
##  [91] 0.9999996984 0.0022693271 0.0074209469 0.0696550648 0.9999997341
##  [96] 0.0203921963 0.1765352748 0.0007842486 0.0001931211 0.9988941118
y <- rbinom(n,1,p)
y
##   [1] 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0
##  [38] 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1
##  [75] 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 1
datagab <- data.frame(y,X1,X2,X3,X4)
datagab
##     y  X1 X2 X3   X4
## 1   0  37  0  0 5.12
## 2   0  30  0  1 5.49
## 3   0  80  0  1 4.49
## 4   0   6  0  1 4.49
## 5   0  63  1  0 4.65
## 6   0  66  1  1 4.30
## 7   1 167  1  1 4.43
## 8   0  46  1  1 4.44
## 9   0  79  0  0 4.66
## 10  0  19  1  0 4.58
## 11  1  98  1  0 4.35
## 12  1 214  1  1 4.54
## 13  0  33  0  0 4.39
## 14  0  51  0  0 4.98
## 15  1 144  1  0 4.50
## 16  1 111  0  1 4.12
## 17  0  23  1  1 4.35
## 18  0  44  1  1 4.09
## 19  0  45  0  0 4.62
## 20  0 117  1  0 5.01
## 21  0  77  0  1 4.88
## 22  1 124  0  0 4.62
## 23  0  77  0  1 4.45
## 24  1 138  1  1 4.67
## 25  0  54  0  0 4.47
## 26  0  19  0  1 3.27
## 27  1 147  1  0 4.72
## 28  1 214  1  0 4.28
## 29  1  80  1  0 5.26
## 30  0  33  0  0 5.80
## 31  0  67  0  1 3.76
## 32  1 264  1  0 4.85
## 33  0  43  1  1 4.57
## 34  1 308  0  1 4.19
## 35  1 119  1  0 4.87
## 36  1 220  0  0 4.92
## 37  0  20  0  0 4.44
## 38  1  99  0  1 4.32
## 39  1 456  0  1 3.85
## 40  0  14  1  1 4.13
## 41  0  40  1  0 4.36
## 42  1 200  0  1 4.35
## 43  1 150  0  1 5.07
## 44  1 176  1  1 4.34
## 45  0  92  0  0 5.64
## 46  1  68  1  1 4.24
## 47  1 152  1  1 5.45
## 48  1 216  0  0 4.60
## 49  0  23  0  0 3.85
## 50  0  37  0  0 4.85
## 51  0  40  1  0 4.52
## 52  0  22  1  1 4.29
## 53  0  27  0  0 5.01
## 54  0  32  0  0 4.81
## 55  1  89  1  1 5.11
## 56  0  29  1  1 3.89
## 57  0  13  1  0 4.16
## 58  0  26  1  0 3.89
## 59  0  91  0  1 2.69
## 60  0  24  1  1 4.70
## 61  0  62  1  0 5.24
## 62  1 104  1  1 4.90
## 63  1 323  0  0 3.70
## 64  1 113  0  1 3.99
## 65  0  59  0  1 3.43
## 66  0  44  0  1 5.24
## 67  0  61  0  0 4.30
## 68  0  59  1  0 3.92
## 69  0  28  1  1 5.03
## 70  1 119  1  1 4.35
## 71  0  53  0  1 3.59
## 72  0  40  0  1 4.49
## 73  1  85  1  0 4.52
## 74  1 341  1  0 4.60
## 75  1 108  1  1 4.75
## 76  1  98  0  1 4.12
## 77  1 194  1  0 4.88
## 78  1 149  1  0 3.78
## 79  1 180  0  1 5.31
## 80  0  10  1  0 4.14
## 81  0  62  0  0 4.77
## 82  1  91  1  0 4.87
## 83  1 252  1  0 4.32
## 84  1 406  1  0 3.54
## 85  0   4  0  1 4.30
## 86  1  86  0  1 4.15
## 87  1 132  0  1 4.27
## 88  0  29  0  1 5.01
## 89  0  36  0  0 4.91
## 90  1 132  1  0 4.64
## 91  1 237  1  0 4.07
## 92  0  24  0  1 6.07
## 93  0  44  0  0 3.52
## 94  0  59  1  1 3.54
## 95  1 237  1  0 4.70
## 96  0  49  0  0 6.14
## 97  0  73  0  1 4.30
## 98  0  13  1  1 3.75
## 99  0   3  0  1 4.24
## 100 1 148  1  1 6.03

Analisis Regresi Logistik

modelreglog <- glm(y~ X1 + X2 + X3 + X4, family = binomial(link = "logit"), data = datagab)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ X1 + X2 + X3 + X4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -16.62916    7.51565  -2.213  0.02692 * 
## X1            0.13522    0.04246   3.184  0.00145 **
## X2            2.96334    1.48414   1.997  0.04586 * 
## X3            2.22500    1.70179   1.307  0.19106   
## X4            0.52382    1.03700   0.505  0.61347   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 136.663  on 99  degrees of freedom
## Residual deviance:  23.317  on 95  degrees of freedom
## AIC: 33.317
## 
## Number of Fisher Scoring iterations: 9