Membangkitkan Data

Skenario

Z : Keputusan menolak/menerima siswa pada SNBP UNNES prodi SSD X1 : Rekam jejak alumni (orang) X2 : Pengambilan Jurusan (0 : sesuai,1 : linjur) X3 : Penempatan pilihan PTN (0: pertama,1 : kedua) X4 : nilai (skala 10)

Membangkitkan data X1

X1 : Rekam jejak alumni (orang) membangkitkan variabel X1 dengan rekam jejak alumni 0-25 orang dengan nilai tengah 17 dan banyaknya pendaftar 247

set.seed(247)
n <- 247
u <- runif(n)

X1 <- round(25*(-log(1-u)/17))
X1
##   [1] 1 4 2 1 0 2 1 0 5 1 1 1 1 1 1 3 1 2 1 1 0 2 2 2 3 0 1 2 2 1 3 3 0 1 1 3 1
##  [38] 1 3 1 1 1 1 0 5 1 3 4 1 4 1 3 2 2 0 0 2 1 3 1 6 0 0 0 3 0 1 2 1 3 0 0 2 0
##  [75] 2 2 1 1 1 1 2 2 1 1 1 0 0 0 3 2 3 3 2 1 3 1 1 2 2 2 0 1 0 1 1 1 0 5 3 1 1
## [112] 1 1 1 1 4 1 0 1 1 0 2 1 0 1 0 1 2 1 1 1 2 6 0 0 3 0 0 1 1 2 2 2 1 1 1 1 7
## [149] 1 4 1 1 1 2 6 3 0 0 0 0 3 2 1 1 1 6 1 1 1 1 0 2 3 2 4 0 0 1 1 0 4 1 1 0 0
## [186] 0 1 1 0 0 1 0 0 1 1 1 2 0 0 1 1 3 1 0 2 0 0 0 0 1 2 1 1 0 1 0 4 2 2 0 0 3
## [223] 2 2 1 0 0 2 1 2 2 0 3 1 0 2 0 1 1 0 2 3 0 0 0 1 0

Membangkitkan data X2

X2 : Pengambilan jurusan Keterangan yang digunakan (0=sesuai) dan (1=linjur)

set.seed(111)
X2 <- round(runif(n))
X2
##   [1] 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0
##  [38] 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0
##  [75] 1 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0
## [112] 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 0
## [149] 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0
## [186] 0 1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1
## [223] 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1

Membangkitkan data X3

X3 : Penempatan pilihan PTN Keterangan yang digunakan (0= pertama),(1= kedua)

set.seed(171)
X3 <- round(runif(n))
X3
##   [1] 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 0 0
##  [38] 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1
##  [75] 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0
## [112] 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 0 0
## [149] 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0
## [186] 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1 0
## [223] 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1

Membangkitkan data X4

X4 adalah data nilai pendaftar dengan skala 10

set.seed(107)
X4 <- sample(1:10,247,replace = TRUE)
X4
##   [1]  2  3  6  2  3  3  3  6  8  6  8  3  3  3  8  4  4  5  1  2  6  1  7  2  1
##  [26]  6  2 10  1  1  4  4  1  5  1  7  9  7  4  5  5  6  8  6  9  5  3  1  3  4
##  [51]  4  8  6  4  3  4  2  5  7  8  9  9  2  8  5  1  1 10  6  8  4  3  4 10  3
##  [76]  2  8  2  4  1  5  1  4  1  3  5  6  1  5  5  4  4  4  4  1  4 10 10  2  7
## [101] 10  6  2  9  6  8  6  6  4  2  6  6  9  7  8  7  3  5  3  8  9  6  4  3  1
## [126]  3  5  2  5  7  6  9  9 10  9 10 10  3  9  4  8 10 10  2 10  2 10  3  7  2
## [151]  3  5  2  5  1 10  9  1  6  5  3  6  5 10 10  4 10 10  2  3 10  2 10  1  4
## [176]  8  9  9  6  2  8  1  6  2  1  5 10  5  5  3  3 10  9  2  1  6  4  5  8 10
## [201]  2 10  3  6  4  2  4  7  4  8  7  6  3  4 10  8  3  3  2  1  5  1  7  3  8
## [226]  3  8  1  9  1 10  7  7  5  1 10  5  9  6  9  1  8  8  3 10  9 10

Membangkitkan data Z

Menentukan koef

b0 <- -12
b1 <- 2.3
b2 <- 1.8
b3 <- 2.7
b4 <- 3.4
set.seed(1)
datapendukung <- b0+(b1*X1)+(b2*X2)+(b3*X3)+(b4*X4)
datapendukung
##   [1] -1.1 11.9 15.7  1.6  0.9  2.8  0.5 10.2 29.4 10.7 22.0  5.0  0.5  3.2 20.2
##  [16]  8.5  6.6 11.4 -3.6  1.6 11.1 -1.3 16.4  2.1  0.1  8.4  1.6 29.3  0.5 -1.8
##  [31] 11.2 10.3 -8.6  7.3 -3.6 20.5 20.9 18.6 10.3  9.1 11.8 10.7 22.0 12.9 31.9
##  [46] 10.0  5.1  5.1  2.3 15.3  5.7 26.6 15.7  6.2  2.7  3.4  1.2 10.0 18.7 22.0
##  [61] 32.4 18.6 -2.5 15.2 16.4 -8.6 -3.6 29.3 13.4 24.8  3.4  0.0  6.2 24.7  7.3
##  [76] -0.6 17.5  1.6  3.9 -4.5 12.3 -2.2  6.6 -6.3  3.2  5.0 12.9 -6.8 16.4 11.4
##  [91] 10.3 10.3  8.0  5.7  2.8  6.6 28.8 26.6  1.2 20.9 23.8 10.7 -0.7 23.6 15.2
## [106] 17.5 10.2 19.9 10.3  1.6 10.7 12.5 22.7 18.6 22.0 25.5  2.3  9.5  3.2 19.3
## [121] 18.6 17.5  8.4  2.7 -1.8  0.9  9.1  1.2 11.8 14.1 13.4 27.7 34.2 23.8 18.6
## [136] 28.9 26.5  0.0 22.7  6.6 24.3 28.4 31.1  1.6 27.0 -2.9 26.1 14.3 16.8  4.0
## [151]  5.0 10.0 -2.9  9.6  5.2 33.4 20.4 -8.6 12.9  9.5  5.1 13.0 10.0 24.3 26.1
## [166] 15.4 27.0 28.8 -0.2  5.0 23.8  1.2 33.4 -1.3 13.5 19.7 21.3 25.4 15.2 -2.5
## [181] 26.2 -4.5 15.2 -2.5 -8.6  5.0 28.8  9.1  9.5  0.0  0.5 26.5 20.4 -2.9 -3.6
## [196] 10.7  8.9  6.8 15.2 26.1  1.6 30.7  3.2 10.2  8.0 -5.2  6.1 11.8  1.6 19.3
## [211] 19.1 12.5  3.2  1.6 28.8 19.7 11.9  2.8 -0.6 -4.1  9.5  0.1 18.2  7.3 17.5
## [226] -1.8 17.0  0.5 23.6  0.5 26.6 16.3 18.7  9.1 -5.9 28.4  6.8 25.4 12.5 23.1
## [241]  0.5 22.1 19.7 -1.8 24.7 23.6 26.5
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 0.2497398944 0.9999932096 0.9999998481 0.8320183851 0.7109495026
##   [6] 0.9426758241 0.6224593312 0.9999628311 1.0000000000 0.9999774556
##  [11] 0.9999999997 0.9933071491 0.6224593312 0.9608342772 0.9999999983
##  [16] 0.9997965730 0.9986414800 0.9999888046 0.0265969936 0.8320183851
##  [21] 0.9999848879 0.2141650170 0.9999999246 0.8909031788 0.5249791875
##  [26] 0.9997751832 0.8320183851 1.0000000000 0.6224593312 0.1418510649
##  [31] 0.9999863260 0.9999663680 0.0001840719 0.9993249173 0.0265969936
##  [36] 0.9999999987 0.9999999992 0.9999999916 0.9999663680 0.9998883467
##  [41] 0.9999924955 0.9999774556 0.9999999997 0.9999975020 1.0000000000
##  [46] 0.9999546021 0.9939401985 0.9939401985 0.9088770390 0.9999997734
##  [51] 0.9966651927 1.0000000000 0.9999998481 0.9979746796 0.9370266439
##  [56] 0.9677045353 0.7685247835 0.9999546021 0.9999999924 0.9999999997
##  [61] 1.0000000000 0.9999999916 0.0758581800 0.9999997495 0.9999999246
##  [66] 0.0001840719 0.0265969936 1.0000000000 0.9999984849 1.0000000000
##  [71] 0.9677045353 0.5000000000 0.9979746796 1.0000000000 0.9993249173
##  [76] 0.3543436938 0.9999999749 0.8320183851 0.9801596943 0.0109869426
##  [81] 0.9999954483 0.0997504891 0.9986414800 0.0018329389 0.9608342772
##  [86] 0.9933071491 0.9999975020 0.0011125360 0.9999999246 0.9999888046
##  [91] 0.9999663680 0.9999663680 0.9996646499 0.9966651927 0.9426758241
##  [96] 0.9986414800 1.0000000000 1.0000000000 0.7685247835 0.9999999992
## [101] 1.0000000000 0.9999774556 0.3318122278 0.9999999999 0.9999997495
## [106] 0.9999999749 0.9999628311 0.9999999977 0.9999663680 0.8320183851
## [111] 0.9999774556 0.9999962734 0.9999999999 0.9999999916 0.9999999997
## [116] 1.0000000000 0.9088770390 0.9999251538 0.9608342772 0.9999999958
## [121] 0.9999999916 0.9999999749 0.9997751832 0.9370266439 0.1418510649
## [126] 0.7109495026 0.9998883467 0.7685247835 0.9999924955 0.9999992476
## [131] 0.9999984849 1.0000000000 1.0000000000 1.0000000000 0.9999999916
## [136] 1.0000000000 1.0000000000 0.5000000000 0.9999999999 0.9986414800
## [141] 1.0000000000 1.0000000000 1.0000000000 0.8320183851 1.0000000000
## [146] 0.0521535631 1.0000000000 0.9999993840 0.9999999494 0.9820137900
## [151] 0.9933071491 0.9999546021 0.0521535631 0.9999322759 0.9945137011
## [156] 1.0000000000 0.9999999986 0.0001840719 0.9999975020 0.9999251538
## [161] 0.9939401985 0.9999977397 0.9999546021 1.0000000000 1.0000000000
## [166] 0.9999997949 1.0000000000 1.0000000000 0.4501660027 0.9933071491
## [171] 1.0000000000 0.7685247835 1.0000000000 0.2141650170 0.9999986290
## [176] 0.9999999972 0.9999999994 1.0000000000 0.9999997495 0.0758581800
## [181] 1.0000000000 0.0109869426 0.9999997495 0.0758581800 0.0001840719
## [186] 0.9933071491 1.0000000000 0.9998883467 0.9999251538 0.5000000000
## [191] 0.6224593312 1.0000000000 0.9999999986 0.0521535631 0.0265969936
## [196] 0.9999774556 0.9998636297 0.9988874640 0.9999997495 1.0000000000
## [201] 0.8320183851 1.0000000000 0.9608342772 0.9999628311 0.9996646499
## [206] 0.0054862989 0.9977621515 0.9999924955 0.8320183851 0.9999999958
## [211] 0.9999999949 0.9999962734 0.9608342772 0.8320183851 1.0000000000
## [216] 0.9999999972 0.9999932096 0.9426758241 0.3543436938 0.0163024994
## [221] 0.9999251538 0.5249791875 0.9999999875 0.9993249173 0.9999999749
## [226] 0.1418510649 0.9999999586 0.6224593312 0.9999999999 0.6224593312
## [231] 1.0000000000 0.9999999166 0.9999999924 0.9998883467 0.0027319608
## [236] 1.0000000000 0.9988874640 1.0000000000 0.9999962734 0.9999999999
## [241] 0.6224593312 0.9999999997 0.9999999972 0.1418510649 1.0000000000
## [246] 0.9999999999 1.0000000000
set.seed(2)
Z <- rbinom(n,1,p)
Z
##   [1] 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1
##  [75] 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [149] 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0
## [186] 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0
## [223] 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1
datagab <- data.frame(Z,X1,X2,X3,X4)
datagab
##     Z X1 X2 X3 X4
## 1   0  1  1  0  2
## 2   1  4  1  1  3
## 3   1  2  0  1  6
## 4   1  1  1  1  2
## 5   0  0  0  1  3
## 6   0  2  0  0  3
## 7   1  1  0  0  3
## 8   1  0  1  0  6
## 9   1  5  0  1  8
## 10  1  1  0  0  6
## 11  1  1  1  1  8
## 12  1  1  1  1  3
## 13  0  1  0  0  3
## 14  1  1  0  1  3
## 15  1  1  0  1  8
## 16  1  3  0  0  4
## 17  1  1  0  1  4
## 18  1  2  1  0  5
## 19  0  1  0  1  1
## 20  1  1  1  1  2
## 21  1  0  0  1  6
## 22  0  2  0  1  1
## 23  1  2  0  0  7
## 24  1  2  0  1  2
## 25  1  3  1  0  1
## 26  1  0  0  0  6
## 27  1  1  1  1  2
## 28  1  2  0  1 10
## 29  0  2  1  1  1
## 30  0  1  1  1  1
## 31  1  3  0  1  4
## 32  1  3  1  0  4
## 33  0  0  0  0  1
## 34  1  1  0  0  5
## 35  0  1  0  1  1
## 36  1  3  1  0  7
## 37  1  1  0  0  9
## 38  1  1  1  1  7
## 39  1  3  1  0  4
## 40  1  1  1  0  5
## 41  1  1  1  1  5
## 42  1  1  0  0  6
## 43  1  1  1  1  8
## 44  1  0  1  1  6
## 45  1  5  1  0  9
## 46  1  1  0  1  5
## 47  1  3  0  0  3
## 48  1  4  1  1  1
## 49  1  1  1  0  3
## 50  1  4  1  1  4
## 51  1  1  1  0  4
## 52  1  3  1  1  8
## 53  1  2  0  1  6
## 54  1  2  0  0  4
## 55  1  0  1  1  3
## 56  1  0  1  0  4
## 57  0  2  1  0  2
## 58  1  1  0  1  5
## 59  1  3  0  0  7
## 60  1  1  1  1  8
## 61  1  6  0  0  9
## 62  1  0  0  0  9
## 63  0  0  0  1  2
## 64  1  0  0  0  8
## 65  1  3  1  1  5
## 66  0  0  0  0  1
## 67  0  1  0  1  1
## 68  1  2  0  1 10
## 69  1  1  0  1  6
## 70  1  3  0  1  8
## 71  1  0  1  0  4
## 72  0  0  1  0  3
## 73  1  2  0  0  4
## 74  1  0  0  1 10
## 75  1  2  1  1  3
## 76  1  2  0  0  2
## 77  1  1  0  0  8
## 78  0  1  1  1  2
## 79  1  1  0  0  4
## 80  0  1  1  0  1
## 81  1  2  0  1  5
## 82  0  2  1  0  1
## 83  1  1  0  1  4
## 84  0  1  0  0  1
## 85  1  1  0  1  3
## 86  1  0  0  0  5
## 87  1  0  1  1  6
## 88  0  0  1  0  1
## 89  1  3  1  1  5
## 90  1  2  1  0  5
## 91  1  3  1  0  4
## 92  1  3  1  0  4
## 93  1  2  1  0  4
## 94  1  1  1  0  4
## 95  1  3  1  1  1
## 96  1  1  0  1  4
## 97  1  1  1  1 10
## 98  1  2  0  0 10
## 99  1  2  1  0  2
## 100 1  2  1  1  7
## 101 1  0  1  0 10
## 102 1  1  0  0  6
## 103 1  0  1  1  2
## 104 1  1  0  1  9
## 105 1  1  1  1  6
## 106 1  1  0  0  8
## 107 1  0  1  0  6
## 108 1  5  0  0  6
## 109 1  3  1  0  4
## 110 1  1  1  1  2
## 111 1  1  0  0  6
## 112 1  1  1  0  6
## 113 1  1  1  0  9
## 114 1  1  1  1  7
## 115 1  1  1  1  8
## 116 1  4  1  1  7
## 117 1  1  1  0  3
## 118 1  0  1  1  5
## 119 1  1  0  1  3
## 120 1  1  1  0  8
## 121 1  0  0  0  9
## 122 1  2  1  1  6
## 123 1  1  1  1  4
## 124 1  0  1  1  3
## 125 0  1  1  1  1
## 126 0  0  0  1  3
## 127 1  1  1  0  5
## 128 1  2  1  0  2
## 129 1  1  1  1  5
## 130 1  1  0  0  7
## 131 1  1  0  1  6
## 132 1  2  1  1  9
## 133 1  6  1  0  9
## 134 1  0  1  0 10
## 135 1  0  0  0  9
## 136 1  3  0  0 10
## 137 1  0  1  1 10
## 138 1  0  1  0  3
## 139 1  1  1  0  9
## 140 1  1  0  1  4
## 141 1  2  1  1  8
## 142 1  2  1  0 10
## 143 1  2  1  1 10
## 144 1  1  1  1  2
## 145 1  1  0  1 10
## 146 0  1  0  0  2
## 147 1  1  1  0 10
## 148 1  7  0  0  3
## 149 1  1  0  1  7
## 150 1  4  0  0  2
## 151 1  1  1  1  3
## 152 1  1  0  1  5
## 153 0  1  0  0  2
## 154 1  2  0  0  5
## 155 1  6  0  0  1
## 156 1  3  1  1 10
## 157 1  0  1  0  9
## 158 0  0  0  0  1
## 159 1  0  1  1  6
## 160 1  0  1  1  5
## 161 1  3  0  0  3
## 162 1  2  0  0  6
## 163 1  1  0  1  5
## 164 1  1  0  0 10
## 165 1  1  1  0 10
## 166 1  6  0  0  4
## 167 1  1  0  1 10
## 168 1  1  1  1 10
## 169 0  1  0  1  2
## 170 1  1  1  1  3
## 171 1  0  1  0 10
## 172 1  2  1  0  2
## 173 1  3  1  1 10
## 174 1  2  0  1  1
## 175 1  4  0  1  4
## 176 1  0  1  1  8
## 177 1  0  0  1  9
## 178 1  1  1  1  9
## 179 1  1  1  1  6
## 180 0  0  0  1  2
## 181 1  4  1  0  8
## 182 0  1  1  0  1
## 183 1  1  1  1  6
## 184 0  0  0  1  2
## 185 0  0  0  0  1
## 186 1  0  0  0  5
## 187 1  1  1  1 10
## 188 1  1  1  0  5
## 189 1  0  1  1  5
## 190 0  0  1  0  3
## 191 1  1  0  0  3
## 192 1  0  1  1 10
## 193 1  0  1  0  9
## 194 0  1  0  0  2
## 195 0  1  0  1  1
## 196 1  1  0  0  6
## 197 1  2  0  1  4
## 198 1  0  1  0  5
## 199 1  0  0  0  8
## 200 1  1  1  0 10
## 201 0  1  1  1  2
## 202 1  3  1  0 10
## 203 1  1  0  1  3
## 204 1  0  1  0  6
## 205 1  2  1  0  4
## 206 0  0  0  0  2
## 207 1  0  1  1  4
## 208 1  0  0  0  7
## 209 1  0  0  0  4
## 210 1  1  1  0  8
## 211 1  2  0  1  7
## 212 1  1  1  0  6
## 213 1  1  0  1  3
## 214 1  0  0  0  4
## 215 1  1  1  1 10
## 216 1  0  1  1  8
## 217 1  4  1  1  3
## 218 1  2  0  0  3
## 219 0  2  0  0  2
## 220 0  0  1  1  1
## 221 1  0  1  1  5
## 222 0  3  1  0  1
## 223 1  2  1  0  7
## 224 1  2  1  1  3
## 225 1  1  0  0  8
## 226 0  0  0  0  3
## 227 1  0  1  0  8
## 228 1  2  1  1  1
## 229 1  1  0  1  9
## 230 0  2  1  1  1
## 231 1  2  0  0 10
## 232 1  0  1  1  7
## 233 1  3  0  0  7
## 234 1  1  1  0  5
## 235 0  0  0  1  1
## 236 1  2  1  0 10
## 237 1  0  1  0  5
## 238 1  1  1  1  9
## 239 1  1  1  0  6
## 240 1  0  1  1  9
## 241 0  2  1  1  1
## 242 1  3  0  0  8
## 243 1  0  1  1  8
## 244 0  0  0  0  3
## 245 1  0  0  1 10
## 246 1  1  0  1  9
## 247 1  0  1  1 10

Analisis regresi logistik

modelreglog <- glm(Z ~ X1 + X2 + X3 + X4, family = binomial(link="logit"),data=datagab)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = Z ~ X1 + X2 + X3 + X4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -13.6141     3.1998  -4.255 2.09e-05 ***
## X1            2.5912     0.6990   3.707  0.00021 ***
## X2            2.0157     0.8207   2.456  0.01405 *  
## X3            2.5033     0.8762   2.857  0.00428 ** 
## X4            3.7399     0.8574   4.362 1.29e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 228.382  on 246  degrees of freedom
## Residual deviance:  54.703  on 242  degrees of freedom
## AIC: 64.703
## 
## Number of Fisher Scoring iterations: 10

kesimpulan Dengan signifikansi statistik dan koefisien diatas, kita dapat menyimpulkan bahwa rekam jejak alumni (X1) dan nilai siswa (X4) adalah faktor yang penting dalam memprediksi keputusan menolak/menerima siswa pada SNBP UNNES prodi SSD. Ini menunjukkan bahwa prestasi akademik siswa (nilai) dan rekam jejak alumni memainkan peran penting dalam proses seleksi masuk prodi SSD, dengan nilai lebih tinggi dan rekam jejak alumni yang lebih baik cenderung meningkatkan kemungkinan diterimanya seorang siswa.