UTS MEMBANGKITKAN DATA SKANRIO INDIVIDU

DATA SKENARIO MEMPREDIKSI KEPUASAAN [500] PELANGGAN TERHADAP LAYANAN

Rancangan Pembangkitan Data

Y: Keputusan Kepuasan Pelanggan (Puas : 1, Tidak Puas : 0) X1: Usia Pelanggan X2: Harga Layanan X3: Kualitas Layanan (Berkualitas : 1, Tidak Berkualitas : 0) X4: Keramahan Petugas

Membangkitkan Variabel X1 X2 X3 X4

sample(1:5, 10, replace = TRUE) : menghasilkan 10 angka acak antara 1 hingga 5, di mana setiap angka dapat muncul lebih dari sekali dalam sampel yang dihasilkan

set.seed(1)
n <- 500
# X1: Usia Pelanggan
X1 <- runif(100, 15, 30)
X1
##   [1] 18.98263 20.58186 23.59280 28.62312 18.02523 28.47585 29.17013 24.91197
##   [9] 24.43671 15.92679 18.08962 17.64835 25.30534 20.76156 26.54762 22.46549
##  [17] 25.76428 29.87859 20.70053 26.66168 29.02058 18.18214 24.77511 16.88333
##  [25] 19.00831 20.79171 15.20085 20.73582 28.04536 20.10523 22.23120 23.99349
##  [33] 22.40312 17.79326 27.41060 25.02700 26.91360 16.61915 25.85566 21.16912
##  [41] 27.31419 24.70590 26.74399 23.29554 22.94579 26.84034 15.34997 22.15845
##  [49] 25.98471 25.39097 22.16429 27.91814 21.57146 18.67196 16.06019 16.49199
##  [57] 19.74408 22.77951 24.93008 21.10245 28.69314 19.40405 21.88599 19.98592
##  [65] 24.76306 18.87025 22.17818 26.49466 16.26370 28.12982 20.08609 27.59161
##  [73] 20.20025 20.00662 22.14527 28.38298 27.96509 20.84984 26.65981 29.40927
##  [81] 21.51989 25.68772 20.99992 19.88028 26.35631 18.04038 25.66682 16.82538
##  [89] 18.68233 17.14957 18.59444 15.88402 24.63432 28.14404 26.68372 26.95963
##  [97] 21.82912 21.15126 27.16305 24.07400
# X2: Harga Layanan
X2 <- round(rnorm(100,3500,1000))/1000;X2
##   [1] 3.898 2.888 3.841 2.371 4.933 5.480 3.133 2.456 4.070 3.365 5.902 3.461
##  [13] 4.190 3.528 2.757 3.689 1.695 4.966 3.653 5.673 3.976 2.790 4.111 2.566
##  [25] 2.246 3.791 3.057 3.501 3.574 2.910 2.931 3.365 4.678 1.976 4.094 3.833
##  [37] 4.563 3.196 3.870 3.767 2.957 4.708 4.660 4.200 5.087 4.058 2.223 2.927
##  [49] 2.275 3.027 2.880 3.542 2.589 3.658 2.845 5.267 4.217 4.410 3.884 5.182
##  [61] 2.864 3.038 4.932 2.849 3.293 3.107 3.180 3.221 3.994 3.323 2.994 4.843
##  [73] 3.285 3.320 3.400 4.213 3.426 3.462 2.818 3.176 3.560 2.911 4.031 1.982
##  [85] 3.807 1.964 3.199 2.972 2.848 3.443 1.586 4.677 1.835 3.036 2.384 2.749
##  [97] 5.587 3.517 2.214 1.859
# X3: Kualitas Layanan
X3 <- round(runif(n))
X3
##   [1] 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0
##  [38] 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0
##  [75] 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1
## [112] 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1
## [149] 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 1 1
## [186] 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1
## [223] 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 1
## [260] 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1
## [297] 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0
## [334] 1 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1
## [371] 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0
## [408] 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0
## [445] 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1
## [482] 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1 0
# X4: Keramahan Petugas
X4 <- sample(1:5, 100, replace = TRUE)
X4
##   [1] 3 1 4 5 4 1 5 3 1 1 5 5 2 4 4 5 4 2 4 2 3 4 2 2 2 2 5 4 3 4 5 4 5 3 2 5 1
##  [38] 2 4 5 4 2 2 1 3 1 3 5 2 4 1 4 1 1 4 4 5 3 2 2 3 1 1 4 4 1 4 5 4 4 3 1 4 4
##  [75] 4 1 2 1 5 4 1 2 1 1 1 3 1 3 2 4 2 3 4 1 2 3 5 5 2 1

Membangkitkan Variabel Y

menentukan Koefesien

b0 <- 20
b1 <- -1.26
b2 <- 0.95
b3 <- -1.2
b4 <- 1.7

Menentukan Peluang Binomial

datapendukung <- b0+(b1*X1)+(b2*X2)+(b3*X3)
datapendukung
##   [1]  -1.41501373  -3.18954170  -6.07797857 -13.81267723   1.97456150
##   [6] -11.87356505 -13.77801258 -10.25587828  -6.92375543   3.12898949
##  [11]   2.81398053   1.05102738  -9.10423180  -4.00796027 -10.83085284
##  [16]  -4.80196568 -10.85273981 -12.92932519  -3.81231489  -9.40436468
##  [21] -13.98872887  -0.25899365  -7.31118418  -0.03529131  -3.01677064
##  [26]  -3.79610635   2.55107270  -4.00118239 -11.94185698  -3.76809604
##  [31]  -6.42686418  -7.03504410  -3.78383070  -1.74231267 -10.64805572
##  [36]  -7.89267135  -9.57628337   2.09606547 -10.10163688  -4.29443672
##  [41] -12.80673496  -6.65683766 -10.47042921  -5.36238629  -5.27905007
##  [46]  -9.96373278   2.77089028  -5.13899823 -10.57947966 -10.31697642
##  [51]  -5.19101086 -11.81195911  -5.92048533  -0.05156854   1.26691601
##  [56]   4.22373957  -2.07138527  -4.51268757  -8.92209594  -1.66619054
##  [61] -13.43255497  -1.56300375  -4.09094223  -2.47570934  -9.27310183
##  [66]  -2.02486716  -4.92350519 -11.52332168   2.10203332 -12.28672314
##  [71]  -2.46417853 -11.36457262  -3.53156795  -2.05434619  -4.67303853
##  [76] -11.76019855 -11.98131599  -4.18190237 -10.91426121 -14.03848015
##  [81]  -3.73306426 -10.80107743  -3.83044357  -4.36625567  -9.59229710
##  [86]  -0.86508362 -10.50114110   0.42342269  -0.83413291   0.46239723
##  [91]  -1.92229595   4.42929027 -10.49599809 -13.77728812 -11.35668740
##  [96] -11.35758681  -3.39703717  -3.30943915 -12.12214759  -8.56718919
## [101]  -1.41501373  -3.18954170  -7.27797857 -15.01267723   0.77456150
## [106] -11.87356505 -13.77801258 -10.25587828  -6.92375543   1.92898949
## [111]   1.61398053   1.05102738  -9.10423180  -4.00796027 -12.03085284
## [116]  -4.80196568 -10.85273981 -12.92932519  -3.81231489  -9.40436468
## [121] -12.78872887  -1.45899365  -8.51118418   1.16470869  -1.81677064
## [126]  -2.59610635   3.75107270  -4.00118239 -13.14185698  -3.76809604
## [131]  -6.42686418  -7.03504410  -3.78383070  -1.74231267 -10.64805572
## [136]  -9.09267135 -10.77628337   2.09606547  -8.90163688  -4.29443672
## [141] -11.60673496  -6.65683766 -10.47042921  -6.56238629  -4.07905007
## [146]  -9.96373278   2.77089028  -6.33899823 -10.57947966  -9.11697642
## [151]  -6.39101086 -11.81195911  -4.72048533  -0.05156854   2.46691601
## [156]   3.02373957  -2.07138527  -5.71268757  -8.92209594  -1.66619054
## [161] -13.43255497  -1.56300375  -2.89094223  -2.47570934  -8.07310183
## [166]  -2.02486716  -6.12350519 -10.32332168   3.30203332 -13.48672314
## [171]  -2.46417853 -11.36457262  -3.53156795  -2.05434619  -4.67303853
## [176] -11.76019855 -13.18131599  -2.98190237 -10.91426121 -15.23848015
## [181]  -4.93306426  -9.60107743  -3.83044357  -4.36625567 -10.79229710
## [186]  -2.06508362  -9.30114110   1.62342269  -2.03413291   1.66239723
## [191]  -1.92229595   3.22929027  -9.29599809 -12.57728812 -11.35668740
## [196] -11.35758681  -2.19703717  -4.50943915 -13.32214759  -8.56718919
## [201]  -1.41501373  -4.38954170  -7.27797857 -15.01267723   1.97456150
## [206] -11.87356505 -13.77801258 -10.25587828  -8.12375543   1.92898949
## [211]   1.61398053   1.05102738  -7.90423180  -4.00796027 -12.03085284
## [216]  -4.80196568 -12.05273981 -14.12932519  -2.61231489  -9.40436468
## [221] -13.98872887  -1.45899365  -7.31118418   1.16470869  -1.81677064
## [226]  -3.79610635   2.55107270  -4.00118239 -13.14185698  -3.76809604
## [231]  -6.42686418  -7.03504410  -3.78383070  -0.54231267 -10.64805572
## [236]  -7.89267135  -9.57628337   2.09606547  -8.90163688  -4.29443672
## [241] -11.60673496  -7.85683766 -10.47042921  -5.36238629  -4.07905007
## [246]  -9.96373278   1.57089028  -5.13899823 -11.77947966 -10.31697642
## [251]  -6.39101086 -13.01195911  -4.72048533  -1.25156854   1.26691601
## [256]   4.22373957  -0.87138527  -4.51268757  -8.92209594  -2.86619054
## [261] -14.63255497  -1.56300375  -2.89094223  -3.67570934  -9.27310183
## [266]  -2.02486716  -4.92350519 -11.52332168   3.30203332 -13.48672314
## [271]  -2.46417853 -10.16457262  -2.33156795  -2.05434619  -5.87303853
## [276] -12.96019855 -13.18131599  -2.98190237 -12.11426121 -15.23848015
## [281]  -3.73306426 -10.80107743  -3.83044357  -3.16625567 -10.79229710
## [286]  -0.86508362  -9.30114110   0.42342269  -2.03413291   0.46239723
## [291]  -3.12229595   4.42929027 -10.49599809 -13.77728812 -12.55668740
## [296] -12.55758681  -2.19703717  -3.30943915 -12.12214759  -8.56718919
## [301]  -1.41501373  -4.38954170  -6.07797857 -15.01267723   0.77456150
## [306] -11.87356505 -13.77801258  -9.05587828  -8.12375543   3.12898949
## [311]   1.61398053   1.05102738  -9.10423180  -4.00796027 -12.03085284
## [316]  -4.80196568 -10.85273981 -12.92932519  -3.81231489  -8.20436468
## [321] -13.98872887  -0.25899365  -8.51118418   1.16470869  -1.81677064
## [326]  -3.79610635   3.75107270  -4.00118239 -11.94185698  -3.76809604
## [331]  -6.42686418  -7.03504410  -3.78383070  -1.74231267 -10.64805572
## [336]  -7.89267135  -9.57628337   2.09606547 -10.10163688  -4.29443672
## [341] -12.80673496  -6.65683766 -10.47042921  -5.36238629  -5.27905007
## [346]  -9.96373278   2.77089028  -6.33899823 -11.77947966 -10.31697642
## [351]  -6.39101086 -13.01195911  -4.72048533  -0.05156854   1.26691601
## [356]   4.22373957  -0.87138527  -5.71268757  -8.92209594  -2.86619054
## [361] -13.43255497  -2.76300375  -2.89094223  -3.67570934  -8.07310183
## [366]  -2.02486716  -6.12350519 -10.32332168   3.30203332 -13.48672314
## [371]  -3.66417853 -11.36457262  -3.53156795  -3.25434619  -5.87303853
## [376] -11.76019855 -11.98131599  -2.98190237 -10.91426121 -14.03848015
## [381]  -4.93306426 -10.80107743  -2.63044357  -4.36625567 -10.79229710
## [386]  -2.06508362  -9.30114110   1.62342269  -0.83413291   0.46239723
## [391]  -1.92229595   3.22929027 -10.49599809 -13.77728812 -11.35668740
## [396] -12.55758681  -3.39703717  -3.30943915 -13.32214759  -8.56718919
## [401]  -1.41501373  -4.38954170  -7.27797857 -15.01267723   0.77456150
## [406] -10.67356505 -13.77801258 -10.25587828  -8.12375543   1.92898949
## [411]   1.61398053   1.05102738  -7.90423180  -4.00796027 -10.83085284
## [416]  -4.80196568 -10.85273981 -12.92932519  -2.61231489  -9.40436468
## [421] -12.78872887  -1.45899365  -8.51118418  -0.03529131  -1.81677064
## [426]  -3.79610635   3.75107270  -4.00118239 -11.94185698  -2.56809604
## [431]  -6.42686418  -8.23504410  -4.98383070  -0.54231267 -11.84805572
## [436]  -7.89267135  -9.57628337   0.89606547  -8.90163688  -3.09443672
## [441] -11.60673496  -7.85683766 -10.47042921  -5.36238629  -4.07905007
## [446]  -9.96373278   2.77089028  -6.33899823 -10.57947966 -10.31697642
## [451]  -5.19101086 -13.01195911  -5.92048533  -0.05156854   2.46691601
## [456]   4.22373957  -0.87138527  -4.51268757  -8.92209594  -1.66619054
## [461] -14.63255497  -1.56300375  -4.09094223  -2.47570934  -8.07310183
## [466]  -0.82486716  -6.12350519 -11.52332168   2.10203332 -13.48672314
## [471]  -2.46417853 -11.36457262  -2.33156795  -3.25434619  -5.87303853
## [476] -11.76019855 -11.98131599  -4.18190237 -10.91426121 -15.23848015
## [481]  -4.93306426 -10.80107743  -3.83044357  -3.16625567 -10.79229710
## [486]  -0.86508362 -10.50114110   1.62342269  -0.83413291   1.66239723
## [491]  -1.92229595   4.42929027 -10.49599809 -12.57728812 -12.55668740
## [496] -12.55758681  -2.19703717  -4.50943915 -13.32214759  -8.56718919
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 1.954445e-01 3.956119e-02 2.287562e-03 1.002836e-06 8.781002e-01
##   [6] 6.972254e-06 1.038209e-06 3.514903e-05 9.831596e-04 9.580728e-01
##  [11] 9.434266e-01 7.409721e-01 1.111819e-04 1.784615e-02 1.977934e-05
##  [16] 8.146673e-03 1.935114e-05 2.425852e-06 2.161925e-02 8.235700e-05
##  [21] 8.409533e-07 4.356111e-01 6.675796e-04 4.911781e-01 4.667396e-02
##  [26] 2.196476e-02 9.276455e-01 1.796534e-02 6.512003e-06 2.257461e-02
##  [31] 1.614903e-03 8.797048e-04 2.223002e-02 1.490194e-01 2.374640e-05
##  [36] 3.733311e-04 6.934942e-05 8.905202e-01 4.101069e-05 1.346060e-02
##  [41] 2.742234e-06 1.283555e-03 2.836208e-05 4.667811e-03 5.071420e-03
##  [46] 4.707446e-05 9.410824e-01 5.829380e-03 2.543193e-05 3.306585e-05
##  [51] 5.535564e-03 7.415290e-06 2.676713e-03 4.871107e-01 7.802144e-01
##  [56] 9.855676e-01 1.119093e-01 1.084993e-02 1.333905e-04 1.589327e-01
##  [61] 1.466611e-06 1.732161e-01 1.644839e-02 7.757869e-02 9.390793e-05
##  [66] 1.166167e-01 7.221068e-03 9.896478e-06 8.911006e-01 4.612559e-06
##  [71] 7.840786e-02 1.159909e-05 2.842725e-02 1.136140e-01 9.257336e-03
##  [76] 7.809213e-06 6.260051e-06 1.503978e-02 1.819653e-05 8.001385e-07
##  [81] 2.336065e-02 2.037712e-05 2.123910e-02 1.253946e-02 6.824780e-05
##  [86] 2.962783e-01 2.750429e-05 6.043020e-01 3.027719e-01 6.135827e-01
##  [91] 1.276058e-01 9.882175e-01 2.764610e-05 1.038961e-06 1.169091e-05
##  [96] 1.168040e-05 3.238819e-02 3.524879e-02 5.437707e-06 1.902105e-04
## [101] 1.954445e-01 3.956119e-02 6.901035e-04 3.020487e-07 6.845068e-01
## [106] 6.972254e-06 1.038209e-06 3.514903e-05 9.831596e-04 8.731375e-01
## [111] 8.339633e-01 7.409721e-01 1.111819e-04 1.784615e-02 5.957505e-06
## [116] 8.146673e-03 1.935114e-05 2.425852e-06 2.161925e-02 8.235700e-05
## [121] 2.792058e-06 1.886213e-01 2.011649e-04 7.621873e-01 1.398218e-01
## [126] 6.938943e-02 9.770467e-01 1.796534e-02 1.961386e-06 2.257461e-02
## [131] 1.614903e-03 8.797048e-04 2.223002e-02 1.490194e-01 2.374640e-05
## [136] 1.124745e-04 2.088866e-05 8.905202e-01 1.361473e-04 1.346060e-02
## [141] 9.104479e-06 1.283555e-03 2.836208e-05 1.410519e-03 1.664189e-02
## [146] 4.707446e-05 9.410824e-01 1.762957e-03 2.543193e-05 1.097741e-04
## [151] 1.673754e-03 7.415290e-06 8.832151e-03 4.871107e-01 9.217897e-01
## [156] 9.536352e-01 1.119093e-01 3.292902e-03 1.333905e-04 1.589327e-01
## [161] 1.466611e-06 1.732161e-01 5.260314e-02 7.757869e-02 3.117174e-04
## [166] 1.166167e-01 2.185974e-03 3.285671e-05 9.644985e-01 1.389281e-06
## [171] 7.840786e-02 1.159909e-05 2.842725e-02 1.136140e-01 9.257336e-03
## [176] 7.809213e-06 1.885499e-06 4.825019e-02 1.819653e-05 2.409972e-07
## [181] 7.152861e-03 6.765123e-05 2.123910e-02 1.253946e-02 2.055682e-05
## [186] 1.125371e-01 9.131163e-05 8.352666e-01 1.156655e-01 8.405595e-01
## [191] 1.276058e-01 9.619218e-01 9.178241e-05 3.449464e-06 1.169091e-05
## [196] 1.168040e-05 1.000169e-01 1.088485e-02 1.637812e-06 1.902105e-04
## [201] 1.954445e-01 1.225438e-02 6.901035e-04 3.020487e-07 8.781002e-01
## [206] 6.972254e-06 1.038209e-06 3.514903e-05 2.963256e-04 8.731375e-01
## [211] 8.339633e-01 7.409721e-01 3.690417e-04 1.784615e-02 5.957505e-06
## [216] 8.146673e-03 5.828531e-06 7.306539e-07 6.835005e-02 8.235700e-05
## [221] 8.409533e-07 1.886213e-01 6.675796e-04 7.621873e-01 1.398218e-01
## [226] 2.196476e-02 9.276455e-01 1.796534e-02 1.961386e-06 2.257461e-02
## [231] 1.614903e-03 8.797048e-04 2.223002e-02 3.676498e-01 2.374640e-05
## [236] 3.733311e-04 6.934942e-05 8.905202e-01 1.361473e-04 1.346060e-02
## [241] 9.104479e-06 3.869463e-04 2.836208e-05 4.667811e-03 1.664189e-02
## [246] 4.707446e-05 8.279105e-01 5.829380e-03 7.660086e-06 3.306585e-05
## [251] 1.673754e-03 2.233454e-06 8.832151e-03 2.224287e-01 7.802144e-01
## [256] 9.855676e-01 2.949661e-01 1.084993e-02 1.333905e-04 5.385042e-02
## [261] 4.417351e-07 1.732161e-01 5.260314e-02 2.470560e-02 9.390793e-05
## [266] 1.166167e-01 7.221068e-03 9.896478e-06 9.644985e-01 1.389281e-06
## [271] 7.840786e-02 3.850929e-05 8.854204e-02 1.136140e-01 2.806411e-03
## [276] 2.352103e-06 1.885499e-06 4.825019e-02 5.480761e-06 2.409972e-07
## [281] 2.336065e-02 2.037712e-05 2.123910e-02 4.045552e-02 2.055682e-05
## [286] 2.962783e-01 9.131163e-05 6.043020e-01 1.156655e-01 6.135827e-01
## [291] 4.219688e-02 9.882175e-01 2.764610e-05 1.038961e-06 3.521263e-06
## [296] 3.518097e-06 1.000169e-01 3.524879e-02 5.437707e-06 1.902105e-04
## [301] 1.954445e-01 1.225438e-02 2.287562e-03 3.020487e-07 6.845068e-01
## [306] 6.972254e-06 1.038209e-06 1.166894e-04 2.963256e-04 9.580728e-01
## [311] 8.339633e-01 7.409721e-01 1.111819e-04 1.784615e-02 5.957505e-06
## [316] 8.146673e-03 1.935114e-05 2.425852e-06 2.161925e-02 2.733826e-04
## [321] 8.409533e-07 4.356111e-01 2.011649e-04 7.621873e-01 1.398218e-01
## [326] 2.196476e-02 9.770467e-01 1.796534e-02 6.512003e-06 2.257461e-02
## [331] 1.614903e-03 8.797048e-04 2.223002e-02 1.490194e-01 2.374640e-05
## [336] 3.733311e-04 6.934942e-05 8.905202e-01 4.101069e-05 1.346060e-02
## [341] 2.742234e-06 1.283555e-03 2.836208e-05 4.667811e-03 5.071420e-03
## [346] 4.707446e-05 9.410824e-01 1.762957e-03 7.660086e-06 3.306585e-05
## [351] 1.673754e-03 2.233454e-06 8.832151e-03 4.871107e-01 7.802144e-01
## [356] 9.855676e-01 2.949661e-01 3.292902e-03 1.333905e-04 5.385042e-02
## [361] 1.466611e-06 5.935643e-02 5.260314e-02 2.470560e-02 3.117174e-04
## [366] 1.166167e-01 2.185974e-03 3.285671e-05 9.644985e-01 1.389281e-06
## [371] 2.498497e-02 1.159909e-05 2.842725e-02 3.717103e-02 2.806411e-03
## [376] 7.809213e-06 6.260051e-06 4.825019e-02 1.819653e-05 8.001385e-07
## [381] 7.152861e-03 2.037712e-05 6.720464e-02 1.253946e-02 2.055682e-05
## [386] 1.125371e-01 9.131163e-05 8.352666e-01 3.027719e-01 6.135827e-01
## [391] 1.276058e-01 9.619218e-01 2.764610e-05 1.038961e-06 1.169091e-05
## [396] 3.518097e-06 3.238819e-02 3.524879e-02 1.637812e-06 1.902105e-04
## [401] 1.954445e-01 1.225438e-02 6.901035e-04 3.020487e-07 6.845068e-01
## [406] 2.314832e-05 1.038209e-06 3.514903e-05 2.963256e-04 8.731375e-01
## [411] 8.339633e-01 7.409721e-01 3.690417e-04 1.784615e-02 1.977934e-05
## [416] 8.146673e-03 1.935114e-05 2.425852e-06 6.835005e-02 8.235700e-05
## [421] 2.792058e-06 1.886213e-01 2.011649e-04 4.911781e-01 1.398218e-01
## [426] 2.196476e-02 9.770467e-01 1.796534e-02 6.512003e-06 7.122014e-02
## [431] 1.614903e-03 2.651250e-04 6.801207e-03 3.676498e-01 7.152398e-06
## [436] 3.733311e-04 6.934942e-05 7.101403e-01 1.361473e-04 4.333732e-02
## [441] 9.104479e-06 3.869463e-04 2.836208e-05 4.667811e-03 1.664189e-02
## [446] 4.707446e-05 9.410824e-01 1.762957e-03 2.543193e-05 3.306585e-05
## [451] 5.535564e-03 2.233454e-06 2.676713e-03 4.871107e-01 9.217897e-01
## [456] 9.855676e-01 2.949661e-01 1.084993e-02 1.333905e-04 1.589327e-01
## [461] 4.417351e-07 1.732161e-01 1.644839e-02 7.757869e-02 3.117174e-04
## [466] 3.047315e-01 2.185974e-03 9.896478e-06 8.911006e-01 1.389281e-06
## [471] 7.840786e-02 1.159909e-05 8.854204e-02 3.717103e-02 2.806411e-03
## [476] 7.809213e-06 6.260051e-06 1.503978e-02 1.819653e-05 2.409972e-07
## [481] 7.152861e-03 2.037712e-05 2.123910e-02 4.045552e-02 2.055682e-05
## [486] 2.962783e-01 2.750429e-05 8.352666e-01 3.027719e-01 8.405595e-01
## [491] 1.276058e-01 9.882175e-01 2.764610e-05 3.449464e-06 3.521263e-06
## [496] 3.518097e-06 1.000169e-01 1.088485e-02 1.637812e-06 1.902105e-04
y <- rbinom(n,1,p)
y
##   [1] 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
##  [38] 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
##  [75] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
## [112] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
## [149] 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [186] 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
## [223] 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0
## [260] 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0
## [297] 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## [334] 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## [371] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## [408] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [445] 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## [482] 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
datagab <- data.frame(y,X1,X2,X3,X4)
datagab
##     y       X1    X2 X3 X4
## 1   0 18.98263 3.898  1  3
## 2   0 20.58186 2.888  0  1
## 3   0 23.59280 3.841  0  4
## 4   0 28.62312 2.371  0  5
## 5   1 18.02523 4.933  0  4
## 6   0 28.47585 5.480  1  1
## 7   0 29.17013 3.133  0  5
## 8   0 24.91197 2.456  1  3
## 9   0 24.43671 4.070  0  1
## 10  1 15.92679 3.365  0  1
## 11  1 18.08962 5.902  0  5
## 12  1 17.64835 3.461  0  5
## 13  0 25.30534 4.190  1  2
## 14  0 20.76156 3.528  1  4
## 15  0 26.54762 2.757  0  4
## 16  0 22.46549 3.689  0  5
## 17  0 25.76428 1.695  0  4
## 18  0 29.87859 4.966  0  2
## 19  1 20.70053 3.653  1  4
## 20  0 26.66168 5.673  1  2
## 21  0 29.02058 3.976  1  3
## 22  0 18.18214 2.790  0  4
## 23  0 24.77511 4.111  0  2
## 24  1 16.88333 2.566  1  2
## 25  0 19.00831 2.246  1  2
## 26  0 20.79171 3.791  1  2
## 27  1 15.20085 3.057  1  5
## 28  0 20.73582 3.501  1  4
## 29  0 28.04536 3.574  0  3
## 30  0 20.10523 2.910  1  4
## 31  0 22.23120 2.931  1  5
## 32  0 23.99349 3.365  0  4
## 33  1 22.40312 4.678  0  5
## 34  0 17.79326 1.976  1  3
## 35  0 27.41060 4.094  0  2
## 36  0 25.02700 3.833  0  5
## 37  0 26.91360 4.563  0  1
## 38  1 16.61915 3.196  0  2
## 39  0 25.85566 3.870  1  4
## 40  0 21.16912 3.767  1  5
## 41  0 27.31419 2.957  1  4
## 42  0 24.70590 4.708  0  2
## 43  0 26.74399 4.660  1  2
## 44  0 23.29554 4.200  0  1
## 45  0 22.94579 5.087  1  3
## 46  0 26.84034 4.058  0  1
## 47  1 15.34997 2.223  0  3
## 48  0 22.15845 2.927  0  5
## 49  0 25.98471 2.275  0  2
## 50  0 25.39097 3.027  1  4
## 51  0 22.16429 2.880  0  1
## 52  0 27.91814 3.542  0  4
## 53  0 21.57146 2.589  1  1
## 54  1 18.67196 3.658  0  1
## 55  1 16.06019 2.845  1  4
## 56  1 16.49199 5.267  0  4
## 57  0 19.74408 4.217  1  5
## 58  0 22.77951 4.410  0  3
## 59  0 24.93008 3.884  1  2
## 60  0 21.10245 5.182  0  2
## 61  0 28.69314 2.864  0  3
## 62  0 19.40405 3.038  0  1
## 63  0 21.88599 4.932  1  1
## 64  1 19.98592 2.849  0  4
## 65  0 24.76306 3.293  1  4
## 66  1 18.87025 3.107  1  1
## 67  0 22.17818 3.180  0  4
## 68  0 26.49466 3.221  1  5
## 69  1 16.26370 3.994  1  4
## 70  0 28.12982 3.323  0  4
## 71  0 20.08609 2.994  0  3
## 72  0 27.59161 4.843  1  1
## 73  0 20.20025 3.285  1  4
## 74  0 20.00662 3.320  0  4
## 75  0 22.14527 3.400  0  4
## 76  0 28.38298 4.213  0  1
## 77  0 27.96509 3.426  0  2
## 78  0 20.84984 3.462  1  1
## 79  0 26.65981 2.818  0  5
## 80  0 29.40927 3.176  0  4
## 81  0 21.51989 3.560  0  1
## 82  0 25.68772 2.911  1  2
## 83  0 20.99992 4.031  1  1
## 84  0 19.88028 1.982  1  1
## 85  0 26.35631 3.807  0  1
## 86  0 18.04038 1.964  0  3
## 87  0 25.66682 3.199  1  1
## 88  1 16.82538 2.972  1  3
## 89  1 18.68233 2.848  0  2
## 90  1 17.14957 3.443  1  4
## 91  0 18.59444 1.586  0  2
## 92  1 15.88402 4.677  0  3
## 93  0 24.63432 1.835  1  4
## 94  0 28.14404 3.036  1  1
## 95  0 26.68372 2.384  0  2
## 96  0 26.95963 2.749  0  3
## 97  0 21.82912 5.587  1  5
## 98  0 21.15126 3.517  0  5
## 99  0 27.16305 2.214  0  2
## 100 0 24.07400 1.859  0  1
## 101 0 18.98263 3.898  1  3
## 102 0 20.58186 2.888  0  1
## 103 0 23.59280 3.841  1  4
## 104 0 28.62312 2.371  1  5
## 105 0 18.02523 4.933  1  4
## 106 0 28.47585 5.480  1  1
## 107 0 29.17013 3.133  0  5
## 108 0 24.91197 2.456  1  3
## 109 0 24.43671 4.070  0  1
## 110 1 15.92679 3.365  1  1
## 111 1 18.08962 5.902  1  5
## 112 0 17.64835 3.461  0  5
## 113 0 25.30534 4.190  1  2
## 114 0 20.76156 3.528  1  4
## 115 0 26.54762 2.757  1  4
## 116 0 22.46549 3.689  0  5
## 117 0 25.76428 1.695  0  4
## 118 0 29.87859 4.966  0  2
## 119 0 20.70053 3.653  1  4
## 120 0 26.66168 5.673  1  2
## 121 0 29.02058 3.976  0  3
## 122 0 18.18214 2.790  1  4
## 123 0 24.77511 4.111  1  2
## 124 1 16.88333 2.566  0  2
## 125 1 19.00831 2.246  0  2
## 126 0 20.79171 3.791  0  2
## 127 1 15.20085 3.057  0  5
## 128 0 20.73582 3.501  1  4
## 129 0 28.04536 3.574  1  3
## 130 0 20.10523 2.910  1  4
## 131 0 22.23120 2.931  1  5
## 132 0 23.99349 3.365  0  4
## 133 0 22.40312 4.678  0  5
## 134 0 17.79326 1.976  1  3
## 135 0 27.41060 4.094  0  2
## 136 0 25.02700 3.833  1  5
## 137 0 26.91360 4.563  1  1
## 138 1 16.61915 3.196  0  2
## 139 0 25.85566 3.870  0  4
## 140 0 21.16912 3.767  1  5
## 141 0 27.31419 2.957  0  4
## 142 0 24.70590 4.708  0  2
## 143 0 26.74399 4.660  1  2
## 144 0 23.29554 4.200  1  1
## 145 0 22.94579 5.087  0  3
## 146 0 26.84034 4.058  0  1
## 147 1 15.34997 2.223  0  3
## 148 0 22.15845 2.927  1  5
## 149 0 25.98471 2.275  0  2
## 150 0 25.39097 3.027  0  4
## 151 0 22.16429 2.880  1  1
## 152 0 27.91814 3.542  0  4
## 153 0 21.57146 2.589  0  1
## 154 0 18.67196 3.658  0  1
## 155 1 16.06019 2.845  0  4
## 156 1 16.49199 5.267  1  4
## 157 0 19.74408 4.217  1  5
## 158 0 22.77951 4.410  1  3
## 159 0 24.93008 3.884  1  2
## 160 0 21.10245 5.182  0  2
## 161 0 28.69314 2.864  0  3
## 162 0 19.40405 3.038  0  1
## 163 0 21.88599 4.932  0  1
## 164 0 19.98592 2.849  0  4
## 165 0 24.76306 3.293  0  4
## 166 0 18.87025 3.107  1  1
## 167 0 22.17818 3.180  1  4
## 168 0 26.49466 3.221  0  5
## 169 1 16.26370 3.994  0  4
## 170 0 28.12982 3.323  1  4
## 171 0 20.08609 2.994  0  3
## 172 0 27.59161 4.843  1  1
## 173 0 20.20025 3.285  1  4
## 174 0 20.00662 3.320  0  4
## 175 0 22.14527 3.400  0  4
## 176 0 28.38298 4.213  0  1
## 177 0 27.96509 3.426  1  2
## 178 0 20.84984 3.462  0  1
## 179 0 26.65981 2.818  0  5
## 180 0 29.40927 3.176  1  4
## 181 0 21.51989 3.560  1  1
## 182 0 25.68772 2.911  0  2
## 183 0 20.99992 4.031  1  1
## 184 0 19.88028 1.982  1  1
## 185 0 26.35631 3.807  1  1
## 186 0 18.04038 1.964  1  3
## 187 0 25.66682 3.199  0  1
## 188 1 16.82538 2.972  0  3
## 189 0 18.68233 2.848  1  2
## 190 1 17.14957 3.443  0  4
## 191 0 18.59444 1.586  0  2
## 192 1 15.88402 4.677  1  3
## 193 0 24.63432 1.835  0  4
## 194 0 28.14404 3.036  0  1
## 195 0 26.68372 2.384  0  2
## 196 0 26.95963 2.749  0  3
## 197 0 21.82912 5.587  0  5
## 198 0 21.15126 3.517  1  5
## 199 0 27.16305 2.214  1  2
## 200 0 24.07400 1.859  0  1
## 201 1 18.98263 3.898  1  3
## 202 0 20.58186 2.888  1  1
## 203 0 23.59280 3.841  1  4
## 204 0 28.62312 2.371  1  5
## 205 0 18.02523 4.933  0  4
## 206 0 28.47585 5.480  1  1
## 207 0 29.17013 3.133  0  5
## 208 0 24.91197 2.456  1  3
## 209 0 24.43671 4.070  1  1
## 210 1 15.92679 3.365  1  1
## 211 1 18.08962 5.902  1  5
## 212 1 17.64835 3.461  0  5
## 213 0 25.30534 4.190  0  2
## 214 0 20.76156 3.528  1  4
## 215 0 26.54762 2.757  1  4
## 216 0 22.46549 3.689  0  5
## 217 0 25.76428 1.695  1  4
## 218 0 29.87859 4.966  1  2
## 219 0 20.70053 3.653  0  4
## 220 0 26.66168 5.673  1  2
## 221 0 29.02058 3.976  1  3
## 222 0 18.18214 2.790  1  4
## 223 0 24.77511 4.111  0  2
## 224 1 16.88333 2.566  0  2
## 225 0 19.00831 2.246  0  2
## 226 0 20.79171 3.791  1  2
## 227 1 15.20085 3.057  1  5
## 228 0 20.73582 3.501  1  4
## 229 0 28.04536 3.574  1  3
## 230 0 20.10523 2.910  1  4
## 231 0 22.23120 2.931  1  5
## 232 0 23.99349 3.365  0  4
## 233 0 22.40312 4.678  0  5
## 234 0 17.79326 1.976  0  3
## 235 0 27.41060 4.094  0  2
## 236 0 25.02700 3.833  0  5
## 237 0 26.91360 4.563  0  1
## 238 1 16.61915 3.196  0  2
## 239 0 25.85566 3.870  0  4
## 240 0 21.16912 3.767  1  5
## 241 0 27.31419 2.957  0  4
## 242 0 24.70590 4.708  1  2
## 243 0 26.74399 4.660  1  2
## 244 0 23.29554 4.200  0  1
## 245 0 22.94579 5.087  0  3
## 246 0 26.84034 4.058  0  1
## 247 1 15.34997 2.223  1  3
## 248 0 22.15845 2.927  0  5
## 249 0 25.98471 2.275  1  2
## 250 0 25.39097 3.027  1  4
## 251 0 22.16429 2.880  1  1
## 252 0 27.91814 3.542  1  4
## 253 0 21.57146 2.589  0  1
## 254 0 18.67196 3.658  1  1
## 255 1 16.06019 2.845  1  4
## 256 1 16.49199 5.267  0  4
## 257 1 19.74408 4.217  0  5
## 258 0 22.77951 4.410  0  3
## 259 0 24.93008 3.884  1  2
## 260 0 21.10245 5.182  1  2
## 261 0 28.69314 2.864  1  3
## 262 0 19.40405 3.038  0  1
## 263 0 21.88599 4.932  0  1
## 264 0 19.98592 2.849  1  4
## 265 0 24.76306 3.293  1  4
## 266 1 18.87025 3.107  1  1
## 267 0 22.17818 3.180  0  4
## 268 0 26.49466 3.221  1  5
## 269 1 16.26370 3.994  0  4
## 270 0 28.12982 3.323  1  4
## 271 0 20.08609 2.994  0  3
## 272 0 27.59161 4.843  0  1
## 273 0 20.20025 3.285  0  4
## 274 0 20.00662 3.320  0  4
## 275 0 22.14527 3.400  1  4
## 276 0 28.38298 4.213  1  1
## 277 0 27.96509 3.426  1  2
## 278 0 20.84984 3.462  0  1
## 279 0 26.65981 2.818  1  5
## 280 0 29.40927 3.176  1  4
## 281 0 21.51989 3.560  0  1
## 282 0 25.68772 2.911  1  2
## 283 0 20.99992 4.031  1  1
## 284 0 19.88028 1.982  0  1
## 285 0 26.35631 3.807  1  1
## 286 1 18.04038 1.964  0  3
## 287 0 25.66682 3.199  0  1
## 288 1 16.82538 2.972  1  3
## 289 0 18.68233 2.848  1  2
## 290 0 17.14957 3.443  1  4
## 291 0 18.59444 1.586  1  2
## 292 1 15.88402 4.677  0  3
## 293 0 24.63432 1.835  1  4
## 294 0 28.14404 3.036  1  1
## 295 0 26.68372 2.384  1  2
## 296 0 26.95963 2.749  1  3
## 297 1 21.82912 5.587  0  5
## 298 0 21.15126 3.517  0  5
## 299 0 27.16305 2.214  0  2
## 300 0 24.07400 1.859  0  1
## 301 0 18.98263 3.898  1  3
## 302 0 20.58186 2.888  1  1
## 303 0 23.59280 3.841  0  4
## 304 0 28.62312 2.371  1  5
## 305 1 18.02523 4.933  1  4
## 306 0 28.47585 5.480  1  1
## 307 0 29.17013 3.133  0  5
## 308 0 24.91197 2.456  0  3
## 309 0 24.43671 4.070  1  1
## 310 1 15.92679 3.365  0  1
## 311 1 18.08962 5.902  1  5
## 312 0 17.64835 3.461  0  5
## 313 0 25.30534 4.190  1  2
## 314 0 20.76156 3.528  1  4
## 315 0 26.54762 2.757  1  4
## 316 0 22.46549 3.689  0  5
## 317 0 25.76428 1.695  0  4
## 318 0 29.87859 4.966  0  2
## 319 0 20.70053 3.653  1  4
## 320 0 26.66168 5.673  0  2
## 321 0 29.02058 3.976  1  3
## 322 0 18.18214 2.790  0  4
## 323 0 24.77511 4.111  1  2
## 324 0 16.88333 2.566  0  2
## 325 0 19.00831 2.246  0  2
## 326 0 20.79171 3.791  1  2
## 327 1 15.20085 3.057  0  5
## 328 0 20.73582 3.501  1  4
## 329 0 28.04536 3.574  0  3
## 330 0 20.10523 2.910  1  4
## 331 0 22.23120 2.931  1  5
## 332 0 23.99349 3.365  0  4
## 333 0 22.40312 4.678  0  5
## 334 0 17.79326 1.976  1  3
## 335 0 27.41060 4.094  0  2
## 336 0 25.02700 3.833  0  5
## 337 0 26.91360 4.563  0  1
## 338 1 16.61915 3.196  0  2
## 339 0 25.85566 3.870  1  4
## 340 0 21.16912 3.767  1  5
## 341 0 27.31419 2.957  1  4
## 342 0 24.70590 4.708  0  2
## 343 0 26.74399 4.660  1  2
## 344 0 23.29554 4.200  0  1
## 345 0 22.94579 5.087  1  3
## 346 0 26.84034 4.058  0  1
## 347 1 15.34997 2.223  0  3
## 348 0 22.15845 2.927  1  5
## 349 0 25.98471 2.275  1  2
## 350 0 25.39097 3.027  1  4
## 351 0 22.16429 2.880  1  1
## 352 0 27.91814 3.542  1  4
## 353 0 21.57146 2.589  0  1
## 354 1 18.67196 3.658  0  1
## 355 0 16.06019 2.845  1  4
## 356 1 16.49199 5.267  0  4
## 357 0 19.74408 4.217  0  5
## 358 0 22.77951 4.410  1  3
## 359 0 24.93008 3.884  1  2
## 360 0 21.10245 5.182  1  2
## 361 0 28.69314 2.864  0  3
## 362 0 19.40405 3.038  1  1
## 363 0 21.88599 4.932  0  1
## 364 0 19.98592 2.849  1  4
## 365 0 24.76306 3.293  0  4
## 366 0 18.87025 3.107  1  1
## 367 0 22.17818 3.180  1  4
## 368 0 26.49466 3.221  0  5
## 369 1 16.26370 3.994  0  4
## 370 0 28.12982 3.323  1  4
## 371 0 20.08609 2.994  1  3
## 372 0 27.59161 4.843  1  1
## 373 0 20.20025 3.285  1  4
## 374 0 20.00662 3.320  1  4
## 375 0 22.14527 3.400  1  4
## 376 0 28.38298 4.213  0  1
## 377 0 27.96509 3.426  0  2
## 378 0 20.84984 3.462  0  1
## 379 0 26.65981 2.818  0  5
## 380 0 29.40927 3.176  0  4
## 381 0 21.51989 3.560  1  1
## 382 0 25.68772 2.911  1  2
## 383 0 20.99992 4.031  0  1
## 384 0 19.88028 1.982  1  1
## 385 0 26.35631 3.807  1  1
## 386 0 18.04038 1.964  1  3
## 387 0 25.66682 3.199  0  1
## 388 0 16.82538 2.972  0  3
## 389 1 18.68233 2.848  0  2
## 390 1 17.14957 3.443  1  4
## 391 0 18.59444 1.586  0  2
## 392 1 15.88402 4.677  1  3
## 393 0 24.63432 1.835  1  4
## 394 0 28.14404 3.036  1  1
## 395 0 26.68372 2.384  0  2
## 396 0 26.95963 2.749  1  3
## 397 0 21.82912 5.587  1  5
## 398 0 21.15126 3.517  0  5
## 399 0 27.16305 2.214  1  2
## 400 0 24.07400 1.859  0  1
## 401 0 18.98263 3.898  1  3
## 402 0 20.58186 2.888  1  1
## 403 0 23.59280 3.841  1  4
## 404 0 28.62312 2.371  1  5
## 405 1 18.02523 4.933  1  4
## 406 0 28.47585 5.480  0  1
## 407 0 29.17013 3.133  0  5
## 408 0 24.91197 2.456  1  3
## 409 0 24.43671 4.070  1  1
## 410 0 15.92679 3.365  1  1
## 411 0 18.08962 5.902  1  5
## 412 0 17.64835 3.461  0  5
## 413 0 25.30534 4.190  0  2
## 414 0 20.76156 3.528  1  4
## 415 0 26.54762 2.757  0  4
## 416 0 22.46549 3.689  0  5
## 417 0 25.76428 1.695  0  4
## 418 0 29.87859 4.966  0  2
## 419 0 20.70053 3.653  0  4
## 420 0 26.66168 5.673  1  2
## 421 0 29.02058 3.976  0  3
## 422 0 18.18214 2.790  1  4
## 423 0 24.77511 4.111  1  2
## 424 0 16.88333 2.566  1  2
## 425 0 19.00831 2.246  0  2
## 426 0 20.79171 3.791  1  2
## 427 1 15.20085 3.057  0  5
## 428 0 20.73582 3.501  1  4
## 429 0 28.04536 3.574  0  3
## 430 0 20.10523 2.910  0  4
## 431 0 22.23120 2.931  1  5
## 432 0 23.99349 3.365  1  4
## 433 0 22.40312 4.678  1  5
## 434 0 17.79326 1.976  0  3
## 435 0 27.41060 4.094  1  2
## 436 0 25.02700 3.833  0  5
## 437 0 26.91360 4.563  0  1
## 438 0 16.61915 3.196  1  2
## 439 0 25.85566 3.870  0  4
## 440 0 21.16912 3.767  0  5
## 441 0 27.31419 2.957  0  4
## 442 0 24.70590 4.708  1  2
## 443 0 26.74399 4.660  1  2
## 444 0 23.29554 4.200  0  1
## 445 0 22.94579 5.087  0  3
## 446 0 26.84034 4.058  0  1
## 447 1 15.34997 2.223  0  3
## 448 0 22.15845 2.927  1  5
## 449 0 25.98471 2.275  0  2
## 450 0 25.39097 3.027  1  4
## 451 0 22.16429 2.880  0  1
## 452 0 27.91814 3.542  1  4
## 453 0 21.57146 2.589  1  1
## 454 0 18.67196 3.658  0  1
## 455 1 16.06019 2.845  0  4
## 456 1 16.49199 5.267  0  4
## 457 0 19.74408 4.217  0  5
## 458 0 22.77951 4.410  0  3
## 459 0 24.93008 3.884  1  2
## 460 0 21.10245 5.182  0  2
## 461 0 28.69314 2.864  1  3
## 462 0 19.40405 3.038  0  1
## 463 0 21.88599 4.932  1  1
## 464 0 19.98592 2.849  0  4
## 465 0 24.76306 3.293  0  4
## 466 0 18.87025 3.107  0  1
## 467 0 22.17818 3.180  1  4
## 468 0 26.49466 3.221  1  5
## 469 0 16.26370 3.994  1  4
## 470 0 28.12982 3.323  1  4
## 471 1 20.08609 2.994  0  3
## 472 0 27.59161 4.843  1  1
## 473 0 20.20025 3.285  0  4
## 474 0 20.00662 3.320  1  4
## 475 0 22.14527 3.400  1  4
## 476 0 28.38298 4.213  0  1
## 477 0 27.96509 3.426  0  2
## 478 0 20.84984 3.462  1  1
## 479 0 26.65981 2.818  0  5
## 480 0 29.40927 3.176  1  4
## 481 0 21.51989 3.560  1  1
## 482 0 25.68772 2.911  1  2
## 483 0 20.99992 4.031  1  1
## 484 0 19.88028 1.982  0  1
## 485 0 26.35631 3.807  1  1
## 486 0 18.04038 1.964  0  3
## 487 0 25.66682 3.199  1  1
## 488 0 16.82538 2.972  0  3
## 489 1 18.68233 2.848  0  2
## 490 1 17.14957 3.443  0  4
## 491 0 18.59444 1.586  0  2
## 492 1 15.88402 4.677  0  3
## 493 0 24.63432 1.835  1  4
## 494 0 28.14404 3.036  0  1
## 495 0 26.68372 2.384  1  2
## 496 0 26.95963 2.749  1  3
## 497 0 21.82912 5.587  0  5
## 498 0 21.15126 3.517  1  5
## 499 0 27.16305 2.214  1  2
## 500 0 24.07400 1.859  0  1

Analisis Regresi Logistik

fit = glm(y ~ X1 + X2 + X3 + X4, family = binomial(link = logit), data = datagab)
summary(fit)
## 
## Call:
## glm(formula = y ~ X1 + X2 + X3 + X4, family = binomial(link = logit), 
##     data = datagab)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  17.6493     2.4219   7.287 3.16e-13 ***
## X1           -1.1358     0.1349  -8.417  < 2e-16 ***
## X2            0.9243     0.2467   3.746  0.00018 ***
## X3           -1.1673     0.4482  -2.604  0.00920 ** 
## X4           -0.0203     0.1674  -0.121  0.90349    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 408.58  on 499  degrees of freedom
## Residual deviance: 150.48  on 495  degrees of freedom
## AIC: 160.48
## 
## Number of Fisher Scoring iterations: 8

Skenario Pembangkitan Data

Pada bagian ini, variabel-variabel X1, X2, X3, dan X4 dibangkitkan secara acak untuk mensimulasikan data kepuasan pelanggan terhadap layanan. Berikut adalah penjelasan untuk setiap variabel:

Kesimpulan