Y: Keputusan Kepuasan Pelanggan (Puas : 1, Tidak Puas : 0) X1: Usia Pelanggan X2: Harga Layanan X3: Kualitas Layanan (Berkualitas : 1, Tidak Berkualitas : 0) X4: Keramahan Petugas
sample(1:5, 10, replace = TRUE) : menghasilkan 10 angka acak antara 1 hingga 5, di mana setiap angka dapat muncul lebih dari sekali dalam sampel yang dihasilkan
set.seed(1)
n <- 500
# X1: Usia Pelanggan
X1 <- runif(100, 15, 30)
X1
## [1] 18.98263 20.58186 23.59280 28.62312 18.02523 28.47585 29.17013 24.91197
## [9] 24.43671 15.92679 18.08962 17.64835 25.30534 20.76156 26.54762 22.46549
## [17] 25.76428 29.87859 20.70053 26.66168 29.02058 18.18214 24.77511 16.88333
## [25] 19.00831 20.79171 15.20085 20.73582 28.04536 20.10523 22.23120 23.99349
## [33] 22.40312 17.79326 27.41060 25.02700 26.91360 16.61915 25.85566 21.16912
## [41] 27.31419 24.70590 26.74399 23.29554 22.94579 26.84034 15.34997 22.15845
## [49] 25.98471 25.39097 22.16429 27.91814 21.57146 18.67196 16.06019 16.49199
## [57] 19.74408 22.77951 24.93008 21.10245 28.69314 19.40405 21.88599 19.98592
## [65] 24.76306 18.87025 22.17818 26.49466 16.26370 28.12982 20.08609 27.59161
## [73] 20.20025 20.00662 22.14527 28.38298 27.96509 20.84984 26.65981 29.40927
## [81] 21.51989 25.68772 20.99992 19.88028 26.35631 18.04038 25.66682 16.82538
## [89] 18.68233 17.14957 18.59444 15.88402 24.63432 28.14404 26.68372 26.95963
## [97] 21.82912 21.15126 27.16305 24.07400
# X2: Harga Layanan
X2 <- round(rnorm(100,3500,1000))/1000;X2
## [1] 3.898 2.888 3.841 2.371 4.933 5.480 3.133 2.456 4.070 3.365 5.902 3.461
## [13] 4.190 3.528 2.757 3.689 1.695 4.966 3.653 5.673 3.976 2.790 4.111 2.566
## [25] 2.246 3.791 3.057 3.501 3.574 2.910 2.931 3.365 4.678 1.976 4.094 3.833
## [37] 4.563 3.196 3.870 3.767 2.957 4.708 4.660 4.200 5.087 4.058 2.223 2.927
## [49] 2.275 3.027 2.880 3.542 2.589 3.658 2.845 5.267 4.217 4.410 3.884 5.182
## [61] 2.864 3.038 4.932 2.849 3.293 3.107 3.180 3.221 3.994 3.323 2.994 4.843
## [73] 3.285 3.320 3.400 4.213 3.426 3.462 2.818 3.176 3.560 2.911 4.031 1.982
## [85] 3.807 1.964 3.199 2.972 2.848 3.443 1.586 4.677 1.835 3.036 2.384 2.749
## [97] 5.587 3.517 2.214 1.859
# X3: Kualitas Layanan
X3 <- round(runif(n))
X3
## [1] 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0
## [38] 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0
## [75] 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1
## [112] 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 1
## [149] 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 1 1
## [186] 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1
## [223] 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 0 0 0 1
## [260] 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1
## [297] 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0
## [334] 1 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1
## [371] 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0
## [408] 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0
## [445] 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1
## [482] 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1 1 0
# X4: Keramahan Petugas
X4 <- sample(1:5, 100, replace = TRUE)
X4
## [1] 3 1 4 5 4 1 5 3 1 1 5 5 2 4 4 5 4 2 4 2 3 4 2 2 2 2 5 4 3 4 5 4 5 3 2 5 1
## [38] 2 4 5 4 2 2 1 3 1 3 5 2 4 1 4 1 1 4 4 5 3 2 2 3 1 1 4 4 1 4 5 4 4 3 1 4 4
## [75] 4 1 2 1 5 4 1 2 1 1 1 3 1 3 2 4 2 3 4 1 2 3 5 5 2 1
menentukan Koefesien
b0 <- 20
b1 <- -1.26
b2 <- 0.95
b3 <- -1.2
b4 <- 1.7
Menentukan Peluang Binomial
datapendukung <- b0+(b1*X1)+(b2*X2)+(b3*X3)
datapendukung
## [1] -1.41501373 -3.18954170 -6.07797857 -13.81267723 1.97456150
## [6] -11.87356505 -13.77801258 -10.25587828 -6.92375543 3.12898949
## [11] 2.81398053 1.05102738 -9.10423180 -4.00796027 -10.83085284
## [16] -4.80196568 -10.85273981 -12.92932519 -3.81231489 -9.40436468
## [21] -13.98872887 -0.25899365 -7.31118418 -0.03529131 -3.01677064
## [26] -3.79610635 2.55107270 -4.00118239 -11.94185698 -3.76809604
## [31] -6.42686418 -7.03504410 -3.78383070 -1.74231267 -10.64805572
## [36] -7.89267135 -9.57628337 2.09606547 -10.10163688 -4.29443672
## [41] -12.80673496 -6.65683766 -10.47042921 -5.36238629 -5.27905007
## [46] -9.96373278 2.77089028 -5.13899823 -10.57947966 -10.31697642
## [51] -5.19101086 -11.81195911 -5.92048533 -0.05156854 1.26691601
## [56] 4.22373957 -2.07138527 -4.51268757 -8.92209594 -1.66619054
## [61] -13.43255497 -1.56300375 -4.09094223 -2.47570934 -9.27310183
## [66] -2.02486716 -4.92350519 -11.52332168 2.10203332 -12.28672314
## [71] -2.46417853 -11.36457262 -3.53156795 -2.05434619 -4.67303853
## [76] -11.76019855 -11.98131599 -4.18190237 -10.91426121 -14.03848015
## [81] -3.73306426 -10.80107743 -3.83044357 -4.36625567 -9.59229710
## [86] -0.86508362 -10.50114110 0.42342269 -0.83413291 0.46239723
## [91] -1.92229595 4.42929027 -10.49599809 -13.77728812 -11.35668740
## [96] -11.35758681 -3.39703717 -3.30943915 -12.12214759 -8.56718919
## [101] -1.41501373 -3.18954170 -7.27797857 -15.01267723 0.77456150
## [106] -11.87356505 -13.77801258 -10.25587828 -6.92375543 1.92898949
## [111] 1.61398053 1.05102738 -9.10423180 -4.00796027 -12.03085284
## [116] -4.80196568 -10.85273981 -12.92932519 -3.81231489 -9.40436468
## [121] -12.78872887 -1.45899365 -8.51118418 1.16470869 -1.81677064
## [126] -2.59610635 3.75107270 -4.00118239 -13.14185698 -3.76809604
## [131] -6.42686418 -7.03504410 -3.78383070 -1.74231267 -10.64805572
## [136] -9.09267135 -10.77628337 2.09606547 -8.90163688 -4.29443672
## [141] -11.60673496 -6.65683766 -10.47042921 -6.56238629 -4.07905007
## [146] -9.96373278 2.77089028 -6.33899823 -10.57947966 -9.11697642
## [151] -6.39101086 -11.81195911 -4.72048533 -0.05156854 2.46691601
## [156] 3.02373957 -2.07138527 -5.71268757 -8.92209594 -1.66619054
## [161] -13.43255497 -1.56300375 -2.89094223 -2.47570934 -8.07310183
## [166] -2.02486716 -6.12350519 -10.32332168 3.30203332 -13.48672314
## [171] -2.46417853 -11.36457262 -3.53156795 -2.05434619 -4.67303853
## [176] -11.76019855 -13.18131599 -2.98190237 -10.91426121 -15.23848015
## [181] -4.93306426 -9.60107743 -3.83044357 -4.36625567 -10.79229710
## [186] -2.06508362 -9.30114110 1.62342269 -2.03413291 1.66239723
## [191] -1.92229595 3.22929027 -9.29599809 -12.57728812 -11.35668740
## [196] -11.35758681 -2.19703717 -4.50943915 -13.32214759 -8.56718919
## [201] -1.41501373 -4.38954170 -7.27797857 -15.01267723 1.97456150
## [206] -11.87356505 -13.77801258 -10.25587828 -8.12375543 1.92898949
## [211] 1.61398053 1.05102738 -7.90423180 -4.00796027 -12.03085284
## [216] -4.80196568 -12.05273981 -14.12932519 -2.61231489 -9.40436468
## [221] -13.98872887 -1.45899365 -7.31118418 1.16470869 -1.81677064
## [226] -3.79610635 2.55107270 -4.00118239 -13.14185698 -3.76809604
## [231] -6.42686418 -7.03504410 -3.78383070 -0.54231267 -10.64805572
## [236] -7.89267135 -9.57628337 2.09606547 -8.90163688 -4.29443672
## [241] -11.60673496 -7.85683766 -10.47042921 -5.36238629 -4.07905007
## [246] -9.96373278 1.57089028 -5.13899823 -11.77947966 -10.31697642
## [251] -6.39101086 -13.01195911 -4.72048533 -1.25156854 1.26691601
## [256] 4.22373957 -0.87138527 -4.51268757 -8.92209594 -2.86619054
## [261] -14.63255497 -1.56300375 -2.89094223 -3.67570934 -9.27310183
## [266] -2.02486716 -4.92350519 -11.52332168 3.30203332 -13.48672314
## [271] -2.46417853 -10.16457262 -2.33156795 -2.05434619 -5.87303853
## [276] -12.96019855 -13.18131599 -2.98190237 -12.11426121 -15.23848015
## [281] -3.73306426 -10.80107743 -3.83044357 -3.16625567 -10.79229710
## [286] -0.86508362 -9.30114110 0.42342269 -2.03413291 0.46239723
## [291] -3.12229595 4.42929027 -10.49599809 -13.77728812 -12.55668740
## [296] -12.55758681 -2.19703717 -3.30943915 -12.12214759 -8.56718919
## [301] -1.41501373 -4.38954170 -6.07797857 -15.01267723 0.77456150
## [306] -11.87356505 -13.77801258 -9.05587828 -8.12375543 3.12898949
## [311] 1.61398053 1.05102738 -9.10423180 -4.00796027 -12.03085284
## [316] -4.80196568 -10.85273981 -12.92932519 -3.81231489 -8.20436468
## [321] -13.98872887 -0.25899365 -8.51118418 1.16470869 -1.81677064
## [326] -3.79610635 3.75107270 -4.00118239 -11.94185698 -3.76809604
## [331] -6.42686418 -7.03504410 -3.78383070 -1.74231267 -10.64805572
## [336] -7.89267135 -9.57628337 2.09606547 -10.10163688 -4.29443672
## [341] -12.80673496 -6.65683766 -10.47042921 -5.36238629 -5.27905007
## [346] -9.96373278 2.77089028 -6.33899823 -11.77947966 -10.31697642
## [351] -6.39101086 -13.01195911 -4.72048533 -0.05156854 1.26691601
## [356] 4.22373957 -0.87138527 -5.71268757 -8.92209594 -2.86619054
## [361] -13.43255497 -2.76300375 -2.89094223 -3.67570934 -8.07310183
## [366] -2.02486716 -6.12350519 -10.32332168 3.30203332 -13.48672314
## [371] -3.66417853 -11.36457262 -3.53156795 -3.25434619 -5.87303853
## [376] -11.76019855 -11.98131599 -2.98190237 -10.91426121 -14.03848015
## [381] -4.93306426 -10.80107743 -2.63044357 -4.36625567 -10.79229710
## [386] -2.06508362 -9.30114110 1.62342269 -0.83413291 0.46239723
## [391] -1.92229595 3.22929027 -10.49599809 -13.77728812 -11.35668740
## [396] -12.55758681 -3.39703717 -3.30943915 -13.32214759 -8.56718919
## [401] -1.41501373 -4.38954170 -7.27797857 -15.01267723 0.77456150
## [406] -10.67356505 -13.77801258 -10.25587828 -8.12375543 1.92898949
## [411] 1.61398053 1.05102738 -7.90423180 -4.00796027 -10.83085284
## [416] -4.80196568 -10.85273981 -12.92932519 -2.61231489 -9.40436468
## [421] -12.78872887 -1.45899365 -8.51118418 -0.03529131 -1.81677064
## [426] -3.79610635 3.75107270 -4.00118239 -11.94185698 -2.56809604
## [431] -6.42686418 -8.23504410 -4.98383070 -0.54231267 -11.84805572
## [436] -7.89267135 -9.57628337 0.89606547 -8.90163688 -3.09443672
## [441] -11.60673496 -7.85683766 -10.47042921 -5.36238629 -4.07905007
## [446] -9.96373278 2.77089028 -6.33899823 -10.57947966 -10.31697642
## [451] -5.19101086 -13.01195911 -5.92048533 -0.05156854 2.46691601
## [456] 4.22373957 -0.87138527 -4.51268757 -8.92209594 -1.66619054
## [461] -14.63255497 -1.56300375 -4.09094223 -2.47570934 -8.07310183
## [466] -0.82486716 -6.12350519 -11.52332168 2.10203332 -13.48672314
## [471] -2.46417853 -11.36457262 -2.33156795 -3.25434619 -5.87303853
## [476] -11.76019855 -11.98131599 -4.18190237 -10.91426121 -15.23848015
## [481] -4.93306426 -10.80107743 -3.83044357 -3.16625567 -10.79229710
## [486] -0.86508362 -10.50114110 1.62342269 -0.83413291 1.66239723
## [491] -1.92229595 4.42929027 -10.49599809 -12.57728812 -12.55668740
## [496] -12.55758681 -2.19703717 -4.50943915 -13.32214759 -8.56718919
p <- exp(datapendukung)/(1+exp(datapendukung))
p
## [1] 1.954445e-01 3.956119e-02 2.287562e-03 1.002836e-06 8.781002e-01
## [6] 6.972254e-06 1.038209e-06 3.514903e-05 9.831596e-04 9.580728e-01
## [11] 9.434266e-01 7.409721e-01 1.111819e-04 1.784615e-02 1.977934e-05
## [16] 8.146673e-03 1.935114e-05 2.425852e-06 2.161925e-02 8.235700e-05
## [21] 8.409533e-07 4.356111e-01 6.675796e-04 4.911781e-01 4.667396e-02
## [26] 2.196476e-02 9.276455e-01 1.796534e-02 6.512003e-06 2.257461e-02
## [31] 1.614903e-03 8.797048e-04 2.223002e-02 1.490194e-01 2.374640e-05
## [36] 3.733311e-04 6.934942e-05 8.905202e-01 4.101069e-05 1.346060e-02
## [41] 2.742234e-06 1.283555e-03 2.836208e-05 4.667811e-03 5.071420e-03
## [46] 4.707446e-05 9.410824e-01 5.829380e-03 2.543193e-05 3.306585e-05
## [51] 5.535564e-03 7.415290e-06 2.676713e-03 4.871107e-01 7.802144e-01
## [56] 9.855676e-01 1.119093e-01 1.084993e-02 1.333905e-04 1.589327e-01
## [61] 1.466611e-06 1.732161e-01 1.644839e-02 7.757869e-02 9.390793e-05
## [66] 1.166167e-01 7.221068e-03 9.896478e-06 8.911006e-01 4.612559e-06
## [71] 7.840786e-02 1.159909e-05 2.842725e-02 1.136140e-01 9.257336e-03
## [76] 7.809213e-06 6.260051e-06 1.503978e-02 1.819653e-05 8.001385e-07
## [81] 2.336065e-02 2.037712e-05 2.123910e-02 1.253946e-02 6.824780e-05
## [86] 2.962783e-01 2.750429e-05 6.043020e-01 3.027719e-01 6.135827e-01
## [91] 1.276058e-01 9.882175e-01 2.764610e-05 1.038961e-06 1.169091e-05
## [96] 1.168040e-05 3.238819e-02 3.524879e-02 5.437707e-06 1.902105e-04
## [101] 1.954445e-01 3.956119e-02 6.901035e-04 3.020487e-07 6.845068e-01
## [106] 6.972254e-06 1.038209e-06 3.514903e-05 9.831596e-04 8.731375e-01
## [111] 8.339633e-01 7.409721e-01 1.111819e-04 1.784615e-02 5.957505e-06
## [116] 8.146673e-03 1.935114e-05 2.425852e-06 2.161925e-02 8.235700e-05
## [121] 2.792058e-06 1.886213e-01 2.011649e-04 7.621873e-01 1.398218e-01
## [126] 6.938943e-02 9.770467e-01 1.796534e-02 1.961386e-06 2.257461e-02
## [131] 1.614903e-03 8.797048e-04 2.223002e-02 1.490194e-01 2.374640e-05
## [136] 1.124745e-04 2.088866e-05 8.905202e-01 1.361473e-04 1.346060e-02
## [141] 9.104479e-06 1.283555e-03 2.836208e-05 1.410519e-03 1.664189e-02
## [146] 4.707446e-05 9.410824e-01 1.762957e-03 2.543193e-05 1.097741e-04
## [151] 1.673754e-03 7.415290e-06 8.832151e-03 4.871107e-01 9.217897e-01
## [156] 9.536352e-01 1.119093e-01 3.292902e-03 1.333905e-04 1.589327e-01
## [161] 1.466611e-06 1.732161e-01 5.260314e-02 7.757869e-02 3.117174e-04
## [166] 1.166167e-01 2.185974e-03 3.285671e-05 9.644985e-01 1.389281e-06
## [171] 7.840786e-02 1.159909e-05 2.842725e-02 1.136140e-01 9.257336e-03
## [176] 7.809213e-06 1.885499e-06 4.825019e-02 1.819653e-05 2.409972e-07
## [181] 7.152861e-03 6.765123e-05 2.123910e-02 1.253946e-02 2.055682e-05
## [186] 1.125371e-01 9.131163e-05 8.352666e-01 1.156655e-01 8.405595e-01
## [191] 1.276058e-01 9.619218e-01 9.178241e-05 3.449464e-06 1.169091e-05
## [196] 1.168040e-05 1.000169e-01 1.088485e-02 1.637812e-06 1.902105e-04
## [201] 1.954445e-01 1.225438e-02 6.901035e-04 3.020487e-07 8.781002e-01
## [206] 6.972254e-06 1.038209e-06 3.514903e-05 2.963256e-04 8.731375e-01
## [211] 8.339633e-01 7.409721e-01 3.690417e-04 1.784615e-02 5.957505e-06
## [216] 8.146673e-03 5.828531e-06 7.306539e-07 6.835005e-02 8.235700e-05
## [221] 8.409533e-07 1.886213e-01 6.675796e-04 7.621873e-01 1.398218e-01
## [226] 2.196476e-02 9.276455e-01 1.796534e-02 1.961386e-06 2.257461e-02
## [231] 1.614903e-03 8.797048e-04 2.223002e-02 3.676498e-01 2.374640e-05
## [236] 3.733311e-04 6.934942e-05 8.905202e-01 1.361473e-04 1.346060e-02
## [241] 9.104479e-06 3.869463e-04 2.836208e-05 4.667811e-03 1.664189e-02
## [246] 4.707446e-05 8.279105e-01 5.829380e-03 7.660086e-06 3.306585e-05
## [251] 1.673754e-03 2.233454e-06 8.832151e-03 2.224287e-01 7.802144e-01
## [256] 9.855676e-01 2.949661e-01 1.084993e-02 1.333905e-04 5.385042e-02
## [261] 4.417351e-07 1.732161e-01 5.260314e-02 2.470560e-02 9.390793e-05
## [266] 1.166167e-01 7.221068e-03 9.896478e-06 9.644985e-01 1.389281e-06
## [271] 7.840786e-02 3.850929e-05 8.854204e-02 1.136140e-01 2.806411e-03
## [276] 2.352103e-06 1.885499e-06 4.825019e-02 5.480761e-06 2.409972e-07
## [281] 2.336065e-02 2.037712e-05 2.123910e-02 4.045552e-02 2.055682e-05
## [286] 2.962783e-01 9.131163e-05 6.043020e-01 1.156655e-01 6.135827e-01
## [291] 4.219688e-02 9.882175e-01 2.764610e-05 1.038961e-06 3.521263e-06
## [296] 3.518097e-06 1.000169e-01 3.524879e-02 5.437707e-06 1.902105e-04
## [301] 1.954445e-01 1.225438e-02 2.287562e-03 3.020487e-07 6.845068e-01
## [306] 6.972254e-06 1.038209e-06 1.166894e-04 2.963256e-04 9.580728e-01
## [311] 8.339633e-01 7.409721e-01 1.111819e-04 1.784615e-02 5.957505e-06
## [316] 8.146673e-03 1.935114e-05 2.425852e-06 2.161925e-02 2.733826e-04
## [321] 8.409533e-07 4.356111e-01 2.011649e-04 7.621873e-01 1.398218e-01
## [326] 2.196476e-02 9.770467e-01 1.796534e-02 6.512003e-06 2.257461e-02
## [331] 1.614903e-03 8.797048e-04 2.223002e-02 1.490194e-01 2.374640e-05
## [336] 3.733311e-04 6.934942e-05 8.905202e-01 4.101069e-05 1.346060e-02
## [341] 2.742234e-06 1.283555e-03 2.836208e-05 4.667811e-03 5.071420e-03
## [346] 4.707446e-05 9.410824e-01 1.762957e-03 7.660086e-06 3.306585e-05
## [351] 1.673754e-03 2.233454e-06 8.832151e-03 4.871107e-01 7.802144e-01
## [356] 9.855676e-01 2.949661e-01 3.292902e-03 1.333905e-04 5.385042e-02
## [361] 1.466611e-06 5.935643e-02 5.260314e-02 2.470560e-02 3.117174e-04
## [366] 1.166167e-01 2.185974e-03 3.285671e-05 9.644985e-01 1.389281e-06
## [371] 2.498497e-02 1.159909e-05 2.842725e-02 3.717103e-02 2.806411e-03
## [376] 7.809213e-06 6.260051e-06 4.825019e-02 1.819653e-05 8.001385e-07
## [381] 7.152861e-03 2.037712e-05 6.720464e-02 1.253946e-02 2.055682e-05
## [386] 1.125371e-01 9.131163e-05 8.352666e-01 3.027719e-01 6.135827e-01
## [391] 1.276058e-01 9.619218e-01 2.764610e-05 1.038961e-06 1.169091e-05
## [396] 3.518097e-06 3.238819e-02 3.524879e-02 1.637812e-06 1.902105e-04
## [401] 1.954445e-01 1.225438e-02 6.901035e-04 3.020487e-07 6.845068e-01
## [406] 2.314832e-05 1.038209e-06 3.514903e-05 2.963256e-04 8.731375e-01
## [411] 8.339633e-01 7.409721e-01 3.690417e-04 1.784615e-02 1.977934e-05
## [416] 8.146673e-03 1.935114e-05 2.425852e-06 6.835005e-02 8.235700e-05
## [421] 2.792058e-06 1.886213e-01 2.011649e-04 4.911781e-01 1.398218e-01
## [426] 2.196476e-02 9.770467e-01 1.796534e-02 6.512003e-06 7.122014e-02
## [431] 1.614903e-03 2.651250e-04 6.801207e-03 3.676498e-01 7.152398e-06
## [436] 3.733311e-04 6.934942e-05 7.101403e-01 1.361473e-04 4.333732e-02
## [441] 9.104479e-06 3.869463e-04 2.836208e-05 4.667811e-03 1.664189e-02
## [446] 4.707446e-05 9.410824e-01 1.762957e-03 2.543193e-05 3.306585e-05
## [451] 5.535564e-03 2.233454e-06 2.676713e-03 4.871107e-01 9.217897e-01
## [456] 9.855676e-01 2.949661e-01 1.084993e-02 1.333905e-04 1.589327e-01
## [461] 4.417351e-07 1.732161e-01 1.644839e-02 7.757869e-02 3.117174e-04
## [466] 3.047315e-01 2.185974e-03 9.896478e-06 8.911006e-01 1.389281e-06
## [471] 7.840786e-02 1.159909e-05 8.854204e-02 3.717103e-02 2.806411e-03
## [476] 7.809213e-06 6.260051e-06 1.503978e-02 1.819653e-05 2.409972e-07
## [481] 7.152861e-03 2.037712e-05 2.123910e-02 4.045552e-02 2.055682e-05
## [486] 2.962783e-01 2.750429e-05 8.352666e-01 3.027719e-01 8.405595e-01
## [491] 1.276058e-01 9.882175e-01 2.764610e-05 3.449464e-06 3.521263e-06
## [496] 3.518097e-06 1.000169e-01 1.088485e-02 1.637812e-06 1.902105e-04
y <- rbinom(n,1,p)
y
## [1] 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
## [38] 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
## [75] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
## [112] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
## [149] 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [186] 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
## [223] 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0
## [260] 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0
## [297] 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## [334] 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
## [371] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## [408] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [445] 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
## [482] 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
datagab <- data.frame(y,X1,X2,X3,X4)
datagab
## y X1 X2 X3 X4
## 1 0 18.98263 3.898 1 3
## 2 0 20.58186 2.888 0 1
## 3 0 23.59280 3.841 0 4
## 4 0 28.62312 2.371 0 5
## 5 1 18.02523 4.933 0 4
## 6 0 28.47585 5.480 1 1
## 7 0 29.17013 3.133 0 5
## 8 0 24.91197 2.456 1 3
## 9 0 24.43671 4.070 0 1
## 10 1 15.92679 3.365 0 1
## 11 1 18.08962 5.902 0 5
## 12 1 17.64835 3.461 0 5
## 13 0 25.30534 4.190 1 2
## 14 0 20.76156 3.528 1 4
## 15 0 26.54762 2.757 0 4
## 16 0 22.46549 3.689 0 5
## 17 0 25.76428 1.695 0 4
## 18 0 29.87859 4.966 0 2
## 19 1 20.70053 3.653 1 4
## 20 0 26.66168 5.673 1 2
## 21 0 29.02058 3.976 1 3
## 22 0 18.18214 2.790 0 4
## 23 0 24.77511 4.111 0 2
## 24 1 16.88333 2.566 1 2
## 25 0 19.00831 2.246 1 2
## 26 0 20.79171 3.791 1 2
## 27 1 15.20085 3.057 1 5
## 28 0 20.73582 3.501 1 4
## 29 0 28.04536 3.574 0 3
## 30 0 20.10523 2.910 1 4
## 31 0 22.23120 2.931 1 5
## 32 0 23.99349 3.365 0 4
## 33 1 22.40312 4.678 0 5
## 34 0 17.79326 1.976 1 3
## 35 0 27.41060 4.094 0 2
## 36 0 25.02700 3.833 0 5
## 37 0 26.91360 4.563 0 1
## 38 1 16.61915 3.196 0 2
## 39 0 25.85566 3.870 1 4
## 40 0 21.16912 3.767 1 5
## 41 0 27.31419 2.957 1 4
## 42 0 24.70590 4.708 0 2
## 43 0 26.74399 4.660 1 2
## 44 0 23.29554 4.200 0 1
## 45 0 22.94579 5.087 1 3
## 46 0 26.84034 4.058 0 1
## 47 1 15.34997 2.223 0 3
## 48 0 22.15845 2.927 0 5
## 49 0 25.98471 2.275 0 2
## 50 0 25.39097 3.027 1 4
## 51 0 22.16429 2.880 0 1
## 52 0 27.91814 3.542 0 4
## 53 0 21.57146 2.589 1 1
## 54 1 18.67196 3.658 0 1
## 55 1 16.06019 2.845 1 4
## 56 1 16.49199 5.267 0 4
## 57 0 19.74408 4.217 1 5
## 58 0 22.77951 4.410 0 3
## 59 0 24.93008 3.884 1 2
## 60 0 21.10245 5.182 0 2
## 61 0 28.69314 2.864 0 3
## 62 0 19.40405 3.038 0 1
## 63 0 21.88599 4.932 1 1
## 64 1 19.98592 2.849 0 4
## 65 0 24.76306 3.293 1 4
## 66 1 18.87025 3.107 1 1
## 67 0 22.17818 3.180 0 4
## 68 0 26.49466 3.221 1 5
## 69 1 16.26370 3.994 1 4
## 70 0 28.12982 3.323 0 4
## 71 0 20.08609 2.994 0 3
## 72 0 27.59161 4.843 1 1
## 73 0 20.20025 3.285 1 4
## 74 0 20.00662 3.320 0 4
## 75 0 22.14527 3.400 0 4
## 76 0 28.38298 4.213 0 1
## 77 0 27.96509 3.426 0 2
## 78 0 20.84984 3.462 1 1
## 79 0 26.65981 2.818 0 5
## 80 0 29.40927 3.176 0 4
## 81 0 21.51989 3.560 0 1
## 82 0 25.68772 2.911 1 2
## 83 0 20.99992 4.031 1 1
## 84 0 19.88028 1.982 1 1
## 85 0 26.35631 3.807 0 1
## 86 0 18.04038 1.964 0 3
## 87 0 25.66682 3.199 1 1
## 88 1 16.82538 2.972 1 3
## 89 1 18.68233 2.848 0 2
## 90 1 17.14957 3.443 1 4
## 91 0 18.59444 1.586 0 2
## 92 1 15.88402 4.677 0 3
## 93 0 24.63432 1.835 1 4
## 94 0 28.14404 3.036 1 1
## 95 0 26.68372 2.384 0 2
## 96 0 26.95963 2.749 0 3
## 97 0 21.82912 5.587 1 5
## 98 0 21.15126 3.517 0 5
## 99 0 27.16305 2.214 0 2
## 100 0 24.07400 1.859 0 1
## 101 0 18.98263 3.898 1 3
## 102 0 20.58186 2.888 0 1
## 103 0 23.59280 3.841 1 4
## 104 0 28.62312 2.371 1 5
## 105 0 18.02523 4.933 1 4
## 106 0 28.47585 5.480 1 1
## 107 0 29.17013 3.133 0 5
## 108 0 24.91197 2.456 1 3
## 109 0 24.43671 4.070 0 1
## 110 1 15.92679 3.365 1 1
## 111 1 18.08962 5.902 1 5
## 112 0 17.64835 3.461 0 5
## 113 0 25.30534 4.190 1 2
## 114 0 20.76156 3.528 1 4
## 115 0 26.54762 2.757 1 4
## 116 0 22.46549 3.689 0 5
## 117 0 25.76428 1.695 0 4
## 118 0 29.87859 4.966 0 2
## 119 0 20.70053 3.653 1 4
## 120 0 26.66168 5.673 1 2
## 121 0 29.02058 3.976 0 3
## 122 0 18.18214 2.790 1 4
## 123 0 24.77511 4.111 1 2
## 124 1 16.88333 2.566 0 2
## 125 1 19.00831 2.246 0 2
## 126 0 20.79171 3.791 0 2
## 127 1 15.20085 3.057 0 5
## 128 0 20.73582 3.501 1 4
## 129 0 28.04536 3.574 1 3
## 130 0 20.10523 2.910 1 4
## 131 0 22.23120 2.931 1 5
## 132 0 23.99349 3.365 0 4
## 133 0 22.40312 4.678 0 5
## 134 0 17.79326 1.976 1 3
## 135 0 27.41060 4.094 0 2
## 136 0 25.02700 3.833 1 5
## 137 0 26.91360 4.563 1 1
## 138 1 16.61915 3.196 0 2
## 139 0 25.85566 3.870 0 4
## 140 0 21.16912 3.767 1 5
## 141 0 27.31419 2.957 0 4
## 142 0 24.70590 4.708 0 2
## 143 0 26.74399 4.660 1 2
## 144 0 23.29554 4.200 1 1
## 145 0 22.94579 5.087 0 3
## 146 0 26.84034 4.058 0 1
## 147 1 15.34997 2.223 0 3
## 148 0 22.15845 2.927 1 5
## 149 0 25.98471 2.275 0 2
## 150 0 25.39097 3.027 0 4
## 151 0 22.16429 2.880 1 1
## 152 0 27.91814 3.542 0 4
## 153 0 21.57146 2.589 0 1
## 154 0 18.67196 3.658 0 1
## 155 1 16.06019 2.845 0 4
## 156 1 16.49199 5.267 1 4
## 157 0 19.74408 4.217 1 5
## 158 0 22.77951 4.410 1 3
## 159 0 24.93008 3.884 1 2
## 160 0 21.10245 5.182 0 2
## 161 0 28.69314 2.864 0 3
## 162 0 19.40405 3.038 0 1
## 163 0 21.88599 4.932 0 1
## 164 0 19.98592 2.849 0 4
## 165 0 24.76306 3.293 0 4
## 166 0 18.87025 3.107 1 1
## 167 0 22.17818 3.180 1 4
## 168 0 26.49466 3.221 0 5
## 169 1 16.26370 3.994 0 4
## 170 0 28.12982 3.323 1 4
## 171 0 20.08609 2.994 0 3
## 172 0 27.59161 4.843 1 1
## 173 0 20.20025 3.285 1 4
## 174 0 20.00662 3.320 0 4
## 175 0 22.14527 3.400 0 4
## 176 0 28.38298 4.213 0 1
## 177 0 27.96509 3.426 1 2
## 178 0 20.84984 3.462 0 1
## 179 0 26.65981 2.818 0 5
## 180 0 29.40927 3.176 1 4
## 181 0 21.51989 3.560 1 1
## 182 0 25.68772 2.911 0 2
## 183 0 20.99992 4.031 1 1
## 184 0 19.88028 1.982 1 1
## 185 0 26.35631 3.807 1 1
## 186 0 18.04038 1.964 1 3
## 187 0 25.66682 3.199 0 1
## 188 1 16.82538 2.972 0 3
## 189 0 18.68233 2.848 1 2
## 190 1 17.14957 3.443 0 4
## 191 0 18.59444 1.586 0 2
## 192 1 15.88402 4.677 1 3
## 193 0 24.63432 1.835 0 4
## 194 0 28.14404 3.036 0 1
## 195 0 26.68372 2.384 0 2
## 196 0 26.95963 2.749 0 3
## 197 0 21.82912 5.587 0 5
## 198 0 21.15126 3.517 1 5
## 199 0 27.16305 2.214 1 2
## 200 0 24.07400 1.859 0 1
## 201 1 18.98263 3.898 1 3
## 202 0 20.58186 2.888 1 1
## 203 0 23.59280 3.841 1 4
## 204 0 28.62312 2.371 1 5
## 205 0 18.02523 4.933 0 4
## 206 0 28.47585 5.480 1 1
## 207 0 29.17013 3.133 0 5
## 208 0 24.91197 2.456 1 3
## 209 0 24.43671 4.070 1 1
## 210 1 15.92679 3.365 1 1
## 211 1 18.08962 5.902 1 5
## 212 1 17.64835 3.461 0 5
## 213 0 25.30534 4.190 0 2
## 214 0 20.76156 3.528 1 4
## 215 0 26.54762 2.757 1 4
## 216 0 22.46549 3.689 0 5
## 217 0 25.76428 1.695 1 4
## 218 0 29.87859 4.966 1 2
## 219 0 20.70053 3.653 0 4
## 220 0 26.66168 5.673 1 2
## 221 0 29.02058 3.976 1 3
## 222 0 18.18214 2.790 1 4
## 223 0 24.77511 4.111 0 2
## 224 1 16.88333 2.566 0 2
## 225 0 19.00831 2.246 0 2
## 226 0 20.79171 3.791 1 2
## 227 1 15.20085 3.057 1 5
## 228 0 20.73582 3.501 1 4
## 229 0 28.04536 3.574 1 3
## 230 0 20.10523 2.910 1 4
## 231 0 22.23120 2.931 1 5
## 232 0 23.99349 3.365 0 4
## 233 0 22.40312 4.678 0 5
## 234 0 17.79326 1.976 0 3
## 235 0 27.41060 4.094 0 2
## 236 0 25.02700 3.833 0 5
## 237 0 26.91360 4.563 0 1
## 238 1 16.61915 3.196 0 2
## 239 0 25.85566 3.870 0 4
## 240 0 21.16912 3.767 1 5
## 241 0 27.31419 2.957 0 4
## 242 0 24.70590 4.708 1 2
## 243 0 26.74399 4.660 1 2
## 244 0 23.29554 4.200 0 1
## 245 0 22.94579 5.087 0 3
## 246 0 26.84034 4.058 0 1
## 247 1 15.34997 2.223 1 3
## 248 0 22.15845 2.927 0 5
## 249 0 25.98471 2.275 1 2
## 250 0 25.39097 3.027 1 4
## 251 0 22.16429 2.880 1 1
## 252 0 27.91814 3.542 1 4
## 253 0 21.57146 2.589 0 1
## 254 0 18.67196 3.658 1 1
## 255 1 16.06019 2.845 1 4
## 256 1 16.49199 5.267 0 4
## 257 1 19.74408 4.217 0 5
## 258 0 22.77951 4.410 0 3
## 259 0 24.93008 3.884 1 2
## 260 0 21.10245 5.182 1 2
## 261 0 28.69314 2.864 1 3
## 262 0 19.40405 3.038 0 1
## 263 0 21.88599 4.932 0 1
## 264 0 19.98592 2.849 1 4
## 265 0 24.76306 3.293 1 4
## 266 1 18.87025 3.107 1 1
## 267 0 22.17818 3.180 0 4
## 268 0 26.49466 3.221 1 5
## 269 1 16.26370 3.994 0 4
## 270 0 28.12982 3.323 1 4
## 271 0 20.08609 2.994 0 3
## 272 0 27.59161 4.843 0 1
## 273 0 20.20025 3.285 0 4
## 274 0 20.00662 3.320 0 4
## 275 0 22.14527 3.400 1 4
## 276 0 28.38298 4.213 1 1
## 277 0 27.96509 3.426 1 2
## 278 0 20.84984 3.462 0 1
## 279 0 26.65981 2.818 1 5
## 280 0 29.40927 3.176 1 4
## 281 0 21.51989 3.560 0 1
## 282 0 25.68772 2.911 1 2
## 283 0 20.99992 4.031 1 1
## 284 0 19.88028 1.982 0 1
## 285 0 26.35631 3.807 1 1
## 286 1 18.04038 1.964 0 3
## 287 0 25.66682 3.199 0 1
## 288 1 16.82538 2.972 1 3
## 289 0 18.68233 2.848 1 2
## 290 0 17.14957 3.443 1 4
## 291 0 18.59444 1.586 1 2
## 292 1 15.88402 4.677 0 3
## 293 0 24.63432 1.835 1 4
## 294 0 28.14404 3.036 1 1
## 295 0 26.68372 2.384 1 2
## 296 0 26.95963 2.749 1 3
## 297 1 21.82912 5.587 0 5
## 298 0 21.15126 3.517 0 5
## 299 0 27.16305 2.214 0 2
## 300 0 24.07400 1.859 0 1
## 301 0 18.98263 3.898 1 3
## 302 0 20.58186 2.888 1 1
## 303 0 23.59280 3.841 0 4
## 304 0 28.62312 2.371 1 5
## 305 1 18.02523 4.933 1 4
## 306 0 28.47585 5.480 1 1
## 307 0 29.17013 3.133 0 5
## 308 0 24.91197 2.456 0 3
## 309 0 24.43671 4.070 1 1
## 310 1 15.92679 3.365 0 1
## 311 1 18.08962 5.902 1 5
## 312 0 17.64835 3.461 0 5
## 313 0 25.30534 4.190 1 2
## 314 0 20.76156 3.528 1 4
## 315 0 26.54762 2.757 1 4
## 316 0 22.46549 3.689 0 5
## 317 0 25.76428 1.695 0 4
## 318 0 29.87859 4.966 0 2
## 319 0 20.70053 3.653 1 4
## 320 0 26.66168 5.673 0 2
## 321 0 29.02058 3.976 1 3
## 322 0 18.18214 2.790 0 4
## 323 0 24.77511 4.111 1 2
## 324 0 16.88333 2.566 0 2
## 325 0 19.00831 2.246 0 2
## 326 0 20.79171 3.791 1 2
## 327 1 15.20085 3.057 0 5
## 328 0 20.73582 3.501 1 4
## 329 0 28.04536 3.574 0 3
## 330 0 20.10523 2.910 1 4
## 331 0 22.23120 2.931 1 5
## 332 0 23.99349 3.365 0 4
## 333 0 22.40312 4.678 0 5
## 334 0 17.79326 1.976 1 3
## 335 0 27.41060 4.094 0 2
## 336 0 25.02700 3.833 0 5
## 337 0 26.91360 4.563 0 1
## 338 1 16.61915 3.196 0 2
## 339 0 25.85566 3.870 1 4
## 340 0 21.16912 3.767 1 5
## 341 0 27.31419 2.957 1 4
## 342 0 24.70590 4.708 0 2
## 343 0 26.74399 4.660 1 2
## 344 0 23.29554 4.200 0 1
## 345 0 22.94579 5.087 1 3
## 346 0 26.84034 4.058 0 1
## 347 1 15.34997 2.223 0 3
## 348 0 22.15845 2.927 1 5
## 349 0 25.98471 2.275 1 2
## 350 0 25.39097 3.027 1 4
## 351 0 22.16429 2.880 1 1
## 352 0 27.91814 3.542 1 4
## 353 0 21.57146 2.589 0 1
## 354 1 18.67196 3.658 0 1
## 355 0 16.06019 2.845 1 4
## 356 1 16.49199 5.267 0 4
## 357 0 19.74408 4.217 0 5
## 358 0 22.77951 4.410 1 3
## 359 0 24.93008 3.884 1 2
## 360 0 21.10245 5.182 1 2
## 361 0 28.69314 2.864 0 3
## 362 0 19.40405 3.038 1 1
## 363 0 21.88599 4.932 0 1
## 364 0 19.98592 2.849 1 4
## 365 0 24.76306 3.293 0 4
## 366 0 18.87025 3.107 1 1
## 367 0 22.17818 3.180 1 4
## 368 0 26.49466 3.221 0 5
## 369 1 16.26370 3.994 0 4
## 370 0 28.12982 3.323 1 4
## 371 0 20.08609 2.994 1 3
## 372 0 27.59161 4.843 1 1
## 373 0 20.20025 3.285 1 4
## 374 0 20.00662 3.320 1 4
## 375 0 22.14527 3.400 1 4
## 376 0 28.38298 4.213 0 1
## 377 0 27.96509 3.426 0 2
## 378 0 20.84984 3.462 0 1
## 379 0 26.65981 2.818 0 5
## 380 0 29.40927 3.176 0 4
## 381 0 21.51989 3.560 1 1
## 382 0 25.68772 2.911 1 2
## 383 0 20.99992 4.031 0 1
## 384 0 19.88028 1.982 1 1
## 385 0 26.35631 3.807 1 1
## 386 0 18.04038 1.964 1 3
## 387 0 25.66682 3.199 0 1
## 388 0 16.82538 2.972 0 3
## 389 1 18.68233 2.848 0 2
## 390 1 17.14957 3.443 1 4
## 391 0 18.59444 1.586 0 2
## 392 1 15.88402 4.677 1 3
## 393 0 24.63432 1.835 1 4
## 394 0 28.14404 3.036 1 1
## 395 0 26.68372 2.384 0 2
## 396 0 26.95963 2.749 1 3
## 397 0 21.82912 5.587 1 5
## 398 0 21.15126 3.517 0 5
## 399 0 27.16305 2.214 1 2
## 400 0 24.07400 1.859 0 1
## 401 0 18.98263 3.898 1 3
## 402 0 20.58186 2.888 1 1
## 403 0 23.59280 3.841 1 4
## 404 0 28.62312 2.371 1 5
## 405 1 18.02523 4.933 1 4
## 406 0 28.47585 5.480 0 1
## 407 0 29.17013 3.133 0 5
## 408 0 24.91197 2.456 1 3
## 409 0 24.43671 4.070 1 1
## 410 0 15.92679 3.365 1 1
## 411 0 18.08962 5.902 1 5
## 412 0 17.64835 3.461 0 5
## 413 0 25.30534 4.190 0 2
## 414 0 20.76156 3.528 1 4
## 415 0 26.54762 2.757 0 4
## 416 0 22.46549 3.689 0 5
## 417 0 25.76428 1.695 0 4
## 418 0 29.87859 4.966 0 2
## 419 0 20.70053 3.653 0 4
## 420 0 26.66168 5.673 1 2
## 421 0 29.02058 3.976 0 3
## 422 0 18.18214 2.790 1 4
## 423 0 24.77511 4.111 1 2
## 424 0 16.88333 2.566 1 2
## 425 0 19.00831 2.246 0 2
## 426 0 20.79171 3.791 1 2
## 427 1 15.20085 3.057 0 5
## 428 0 20.73582 3.501 1 4
## 429 0 28.04536 3.574 0 3
## 430 0 20.10523 2.910 0 4
## 431 0 22.23120 2.931 1 5
## 432 0 23.99349 3.365 1 4
## 433 0 22.40312 4.678 1 5
## 434 0 17.79326 1.976 0 3
## 435 0 27.41060 4.094 1 2
## 436 0 25.02700 3.833 0 5
## 437 0 26.91360 4.563 0 1
## 438 0 16.61915 3.196 1 2
## 439 0 25.85566 3.870 0 4
## 440 0 21.16912 3.767 0 5
## 441 0 27.31419 2.957 0 4
## 442 0 24.70590 4.708 1 2
## 443 0 26.74399 4.660 1 2
## 444 0 23.29554 4.200 0 1
## 445 0 22.94579 5.087 0 3
## 446 0 26.84034 4.058 0 1
## 447 1 15.34997 2.223 0 3
## 448 0 22.15845 2.927 1 5
## 449 0 25.98471 2.275 0 2
## 450 0 25.39097 3.027 1 4
## 451 0 22.16429 2.880 0 1
## 452 0 27.91814 3.542 1 4
## 453 0 21.57146 2.589 1 1
## 454 0 18.67196 3.658 0 1
## 455 1 16.06019 2.845 0 4
## 456 1 16.49199 5.267 0 4
## 457 0 19.74408 4.217 0 5
## 458 0 22.77951 4.410 0 3
## 459 0 24.93008 3.884 1 2
## 460 0 21.10245 5.182 0 2
## 461 0 28.69314 2.864 1 3
## 462 0 19.40405 3.038 0 1
## 463 0 21.88599 4.932 1 1
## 464 0 19.98592 2.849 0 4
## 465 0 24.76306 3.293 0 4
## 466 0 18.87025 3.107 0 1
## 467 0 22.17818 3.180 1 4
## 468 0 26.49466 3.221 1 5
## 469 0 16.26370 3.994 1 4
## 470 0 28.12982 3.323 1 4
## 471 1 20.08609 2.994 0 3
## 472 0 27.59161 4.843 1 1
## 473 0 20.20025 3.285 0 4
## 474 0 20.00662 3.320 1 4
## 475 0 22.14527 3.400 1 4
## 476 0 28.38298 4.213 0 1
## 477 0 27.96509 3.426 0 2
## 478 0 20.84984 3.462 1 1
## 479 0 26.65981 2.818 0 5
## 480 0 29.40927 3.176 1 4
## 481 0 21.51989 3.560 1 1
## 482 0 25.68772 2.911 1 2
## 483 0 20.99992 4.031 1 1
## 484 0 19.88028 1.982 0 1
## 485 0 26.35631 3.807 1 1
## 486 0 18.04038 1.964 0 3
## 487 0 25.66682 3.199 1 1
## 488 0 16.82538 2.972 0 3
## 489 1 18.68233 2.848 0 2
## 490 1 17.14957 3.443 0 4
## 491 0 18.59444 1.586 0 2
## 492 1 15.88402 4.677 0 3
## 493 0 24.63432 1.835 1 4
## 494 0 28.14404 3.036 0 1
## 495 0 26.68372 2.384 1 2
## 496 0 26.95963 2.749 1 3
## 497 0 21.82912 5.587 0 5
## 498 0 21.15126 3.517 1 5
## 499 0 27.16305 2.214 1 2
## 500 0 24.07400 1.859 0 1
fit = glm(y ~ X1 + X2 + X3 + X4, family = binomial(link = logit), data = datagab)
summary(fit)
##
## Call:
## glm(formula = y ~ X1 + X2 + X3 + X4, family = binomial(link = logit),
## data = datagab)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 17.6493 2.4219 7.287 3.16e-13 ***
## X1 -1.1358 0.1349 -8.417 < 2e-16 ***
## X2 0.9243 0.2467 3.746 0.00018 ***
## X3 -1.1673 0.4482 -2.604 0.00920 **
## X4 -0.0203 0.1674 -0.121 0.90349
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 408.58 on 499 degrees of freedom
## Residual deviance: 150.48 on 495 degrees of freedom
## AIC: 160.48
##
## Number of Fisher Scoring iterations: 8
Pada bagian ini, variabel-variabel X1, X2, X3, dan X4 dibangkitkan secara acak untuk mensimulasikan data kepuasan pelanggan terhadap layanan. Berikut adalah penjelasan untuk setiap variabel: