Y :Keputusan menolak/menerima merental mobil (0 : Menolak, 1: Menerima) X1 :SIM (0: Tidak Memiliki, 1: Memiliki) X2 :KTP (0: Tidak Aktif, 1: Memiliki) X3 :Asuransi (0: Tidak Memiliki, 1: Memiliki) X4 :Kartu Kredit atau Debit (0: Tidak Memiliki, 1: Memiliki)
X1 :SIM (0: Tidak Memiliki, 1: Memiliki)
n <- 100
u <- runif(n)
set.seed(110)
X1 <- round(runif(n))
X1
## [1] 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 0 1
## [38] 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0
## [75] 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0
X2 : KTP (0: Tidak Aktif, 1: Memiliki)
set.seed(111)
X2 <- round(runif(n))
X2
## [1] 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0
## [38] 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0
## [75] 1 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1
X3 :Asuransi (0: Tidak Memiliki, 1: Memiliki)
set.seed(17)
X3 <- round(runif(n))
X3
## [1] 0 1 0 1 0 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1
## [38] 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1
## [75] 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 0 1
X4 :Kartu Kredit atau Debit (0: Tidak Memiliki, 1: Memiliki)
set.seed(19)
X4 <- round(runif(n))
X4
## [1] 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1
## [38] 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1
## [75] 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0
Menentukan Koef
b0 <- -8
b1 <- 3
b2 <- 3
b3 <- 3
b4 <- 3
set.seed(103)
datas <- b0+(b1*X1)+(b2*X2)+(b3*X3)+(b4*X4)
datas
## [1] -2 -2 -2 1 -5 -5 -5 1 1 -2 -2 -5 -2 1 -2 -2 -5 1 -2 1 1 1 1 -2 4
## [26] -5 -2 1 4 -2 -5 -2 -5 -5 1 -2 1 4 -2 1 4 -2 -5 4 1 -2 -2 -2 -2 -2
## [51] 4 1 -5 -5 1 -2 -2 -2 -5 -5 -2 1 -5 -2 -2 1 -5 -5 -5 -2 -2 4 -2 -2 -2
## [76] -5 -5 -2 -8 4 -2 -2 -2 1 -5 -5 -2 1 -2 -5 -2 1 4 -2 -2 -2 4 -5 1 -2
p <- exp(datas)/(1+exp(datas))
p
## [1] 0.1192029220 0.1192029220 0.1192029220 0.7310585786 0.0066928509
## [6] 0.0066928509 0.0066928509 0.7310585786 0.7310585786 0.1192029220
## [11] 0.1192029220 0.0066928509 0.1192029220 0.7310585786 0.1192029220
## [16] 0.1192029220 0.0066928509 0.7310585786 0.1192029220 0.7310585786
## [21] 0.7310585786 0.7310585786 0.7310585786 0.1192029220 0.9820137900
## [26] 0.0066928509 0.1192029220 0.7310585786 0.9820137900 0.1192029220
## [31] 0.0066928509 0.1192029220 0.0066928509 0.0066928509 0.7310585786
## [36] 0.1192029220 0.7310585786 0.9820137900 0.1192029220 0.7310585786
## [41] 0.9820137900 0.1192029220 0.0066928509 0.9820137900 0.7310585786
## [46] 0.1192029220 0.1192029220 0.1192029220 0.1192029220 0.1192029220
## [51] 0.9820137900 0.7310585786 0.0066928509 0.0066928509 0.7310585786
## [56] 0.1192029220 0.1192029220 0.1192029220 0.0066928509 0.0066928509
## [61] 0.1192029220 0.7310585786 0.0066928509 0.1192029220 0.1192029220
## [66] 0.7310585786 0.0066928509 0.0066928509 0.0066928509 0.1192029220
## [71] 0.1192029220 0.9820137900 0.1192029220 0.1192029220 0.1192029220
## [76] 0.0066928509 0.0066928509 0.1192029220 0.0003353501 0.9820137900
## [81] 0.1192029220 0.1192029220 0.1192029220 0.7310585786 0.0066928509
## [86] 0.0066928509 0.1192029220 0.7310585786 0.1192029220 0.0066928509
## [91] 0.1192029220 0.7310585786 0.9820137900 0.1192029220 0.1192029220
## [96] 0.1192029220 0.9820137900 0.0066928509 0.7310585786 0.1192029220
set.seed(2)
Y <- ifelse(X1 == 1 & X2 == 1 & X3 == 1 & X4 == 1, 1, 0)
Y
## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
## [38] 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
## [75] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
datagab <- data.frame(Y,X1,X2,X3,X4)
datagab
## Y X1 X2 X3 X4
## 1 0 1 1 0 0
## 2 0 0 1 1 0
## 3 0 1 0 0 1
## 4 0 1 1 1 0
## 5 0 1 0 0 0
## 6 0 0 0 1 0
## 7 0 1 0 0 0
## 8 0 1 1 0 1
## 9 0 1 0 1 1
## 10 0 1 0 0 1
## 11 0 1 1 0 0
## 12 0 0 1 0 0
## 13 0 0 0 1 1
## 14 0 1 0 1 1
## 15 0 1 0 1 0
## 16 0 0 0 1 1
## 17 0 0 0 1 0
## 18 0 1 1 0 1
## 19 0 1 0 1 0
## 20 0 0 1 1 1
## 21 0 1 0 1 1
## 22 0 1 0 1 1
## 23 0 1 0 1 1
## 24 0 0 0 1 1
## 25 1 1 1 1 1
## 26 0 0 0 0 1
## 27 0 0 1 1 0
## 28 0 1 0 1 1
## 29 1 1 1 1 1
## 30 0 1 1 0 0
## 31 0 1 0 0 0
## 32 0 0 1 0 1
## 33 0 0 0 1 0
## 34 0 0 0 0 1
## 35 0 1 0 1 1
## 36 0 0 1 0 1
## 37 0 1 0 1 1
## 38 1 1 1 1 1
## 39 0 0 1 1 0
## 40 0 1 1 1 0
## 41 1 1 1 1 1
## 42 0 1 0 1 0
## 43 0 0 1 0 0
## 44 1 1 1 1 1
## 45 0 1 1 0 1
## 46 0 1 0 0 1
## 47 0 0 0 1 1
## 48 0 0 1 1 0
## 49 0 1 1 0 0
## 50 0 0 1 1 0
## 51 1 1 1 1 1
## 52 0 1 1 0 1
## 53 0 0 0 1 0
## 54 0 1 0 0 0
## 55 0 0 1 1 1
## 56 0 0 1 1 0
## 57 0 0 1 1 0
## 58 0 1 0 0 1
## 59 0 0 0 0 1
## 60 0 0 1 0 0
## 61 0 1 0 0 1
## 62 0 1 0 1 1
## 63 0 1 0 0 0
## 64 0 1 0 0 1
## 65 0 0 1 0 1
## 66 0 1 0 1 1
## 67 0 0 0 0 1
## 68 0 0 0 0 1
## 69 0 0 0 0 1
## 70 0 0 0 1 1
## 71 0 1 1 0 0
## 72 1 1 1 1 1
## 73 0 1 0 0 1
## 74 0 0 0 1 1
## 75 0 1 1 0 0
## 76 0 0 0 1 0
## 77 0 0 0 1 0
## 78 0 1 1 0 0
## 79 0 0 0 0 0
## 80 1 1 1 1 1
## 81 0 0 0 1 1
## 82 0 0 1 0 1
## 83 0 1 0 0 1
## 84 0 1 0 1 1
## 85 0 1 0 0 0
## 86 0 0 0 0 1
## 87 0 0 1 1 0
## 88 0 0 1 1 1
## 89 0 0 1 1 0
## 90 0 0 1 0 0
## 91 0 0 1 1 0
## 92 0 0 1 1 1
## 93 1 1 1 1 1
## 94 0 1 1 0 0
## 95 0 0 1 0 1
## 96 0 0 0 1 1
## 97 1 1 1 1 1
## 98 0 0 0 1 0
## 99 0 1 1 0 1
## 100 0 0 1 1 0
modelreglog <- glm(Y~X1+X2+X3+X4,family = binomial(link = "logit"),data=datagab)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
##
## Call:
## glm(formula = Y ~ X1 + X2 + X3 + X4, family = binomial(link = "logit"),
## data = datagab)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -164.57 102980.78 -0.002 0.999
## X1 46.82 42627.67 0.001 0.999
## X2 47.94 44123.64 0.001 0.999
## X3 47.16 44347.35 0.001 0.999
## X4 46.17 43185.98 0.001 0.999
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6.5017e+01 on 99 degrees of freedom
## Residual deviance: 3.4965e-09 on 95 degrees of freedom
## AIC: 10
##
## Number of Fisher Scoring iterations: 25