Y :Keputusan menolak/menerima merental Motor X1 :KTP (0: Memiliki, 1: Tidak Memiliki) X2 :SIM (0: Aktif, 1: Tidak Memiliki) X3 :Asuransi (0: Memiliki, 1: Tidak Memiliki) X4 :Cash atau Debit (0: Memiliki, 1: Tidak Memiliki)
X1 :KTP (Tahun) Membangkitkan variabel X1 dengan memiliki Umur minimal 17 tahun dan maksimal umur 55 tahun dan banyaknya perental adalah 200
n <- 200
u <- runif(n)
set.seed(123)
X1 <- round(runif(n))
X1
## [1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1
## [38] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0
## [75] 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 1
## [112] 0 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0
## [149] 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1
## [186] 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1
yang punya KTP aktif = 107 tidak aktif = 93
X2 :Status SIM (0: Aktif, 1: Tidak Aktif)
set.seed(1234)
X2 <- round(runif(n))
X2
## [1] 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0
## [38] 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1
## [75] 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
## [112] 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1
## [149] 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1
## [186] 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1
Dari data X2 diperoleh jumlah SIM aktif = 96 jumlah SIM yang tidak aktif = 104
X3 :Asuransi (0: Memiliki, 1: Tidak Memiliki)
set.seed(1236)
X3 <- round(runif(n))
X3
## [1] 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0
## [38] 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0
## [75] 0 1 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1
## [112] 1 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 1
## [149] 0 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0
## [186] 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0
yang mempunyai asuransi aktif = 101 yang tidak aktif = 99
X4 :cash atau Debit (0: Aktif, 1: Tidak Aktif)
set.seed(19)
X4 <- round(runif(n))
X4
## [1] 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1
## [38] 1 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1
## [75] 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0
## [112] 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1
## [149] 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0
## [186] 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0
yang memiliki jaminanan metode pembayaran cash atau debit aktif = 91 yang tidak aktif = 109
Menentukan Koefisien
b0 <- -8
b1 <- 3
b2 <- 4
b3 <- 2
b4 <- 1
set.seed(103)
datas <- b0+(b1*X1)+(b2*X2)+(b3*X3)+(b4*X4)
datas
## [1] -8 1 -3 -1 -1 -2 -3 -2 0 -3 1 -2 -4 2 -6 0 -8 -7 -6 -4 -2 -2 -2 -4 -2
## [26] 0 -1 0 -1 -8 -5 -2 -3 0 -7 -3 -4 -5 -4 -2 -3 -4 -8 -3 -5 -3 -3 -6 -6 -1
## [51] -5 -5 1 -4 -2 -4 -6 0 -4 -2 2 -7 -6 -7 -4 -1 -2 0 -4 -3 -5 0 -2 -3 -8
## [76] -2 -6 -5 -6 -3 -1 -4 -5 0 -6 -1 -5 -2 -3 -2 -6 0 -7 -3 -5 -3 -4 -6 -5 1
## [101] -4 -4 -6 -2 -8 -4 -5 -5 -5 -5 1 -6 -4 -4 -2 -4 -1 -4 -2 -4 2 -1 -1 -1 -6
## [126] -2 -7 -1 -6 -4 2 -1 -4 -4 1 -5 -1 1 -1 -1 -2 -2 -7 -6 -4 -1 -1 -1 -4 1
## [151] -2 -8 -6 -4 -7 -3 1 -2 -7 -2 -3 -2 -3 -7 -7 2 -3 -5 -3 -5 -1 -1 0 -3 -2
## [176] -1 -5 0 -2 -4 -3 -5 0 -6 -1 -8 -4 -1 -3 0 -3 -4 -5 -1 2 -4 -4 2 -1 -1
p <- exp(datas)/(1+exp(datas))
p
## [1] 0.0003353501 0.7310585786 0.0474258732 0.2689414214 0.2689414214
## [6] 0.1192029220 0.0474258732 0.1192029220 0.5000000000 0.0474258732
## [11] 0.7310585786 0.1192029220 0.0179862100 0.8807970780 0.0024726232
## [16] 0.5000000000 0.0003353501 0.0009110512 0.0024726232 0.0179862100
## [21] 0.1192029220 0.1192029220 0.1192029220 0.0179862100 0.1192029220
## [26] 0.5000000000 0.2689414214 0.5000000000 0.2689414214 0.0003353501
## [31] 0.0066928509 0.1192029220 0.0474258732 0.5000000000 0.0009110512
## [36] 0.0474258732 0.0179862100 0.0066928509 0.0179862100 0.1192029220
## [41] 0.0474258732 0.0179862100 0.0003353501 0.0474258732 0.0066928509
## [46] 0.0474258732 0.0474258732 0.0024726232 0.0024726232 0.2689414214
## [51] 0.0066928509 0.0066928509 0.7310585786 0.0179862100 0.1192029220
## [56] 0.0179862100 0.0024726232 0.5000000000 0.0179862100 0.1192029220
## [61] 0.8807970780 0.0009110512 0.0024726232 0.0009110512 0.0179862100
## [66] 0.2689414214 0.1192029220 0.5000000000 0.0179862100 0.0474258732
## [71] 0.0066928509 0.5000000000 0.1192029220 0.0474258732 0.0003353501
## [76] 0.1192029220 0.0024726232 0.0066928509 0.0024726232 0.0474258732
## [81] 0.2689414214 0.0179862100 0.0066928509 0.5000000000 0.0024726232
## [86] 0.2689414214 0.0066928509 0.1192029220 0.0474258732 0.1192029220
## [91] 0.0024726232 0.5000000000 0.0009110512 0.0474258732 0.0066928509
## [96] 0.0474258732 0.0179862100 0.0024726232 0.0066928509 0.7310585786
## [101] 0.0179862100 0.0179862100 0.0024726232 0.1192029220 0.0003353501
## [106] 0.0179862100 0.0066928509 0.0066928509 0.0066928509 0.0066928509
## [111] 0.7310585786 0.0024726232 0.0179862100 0.0179862100 0.1192029220
## [116] 0.0179862100 0.2689414214 0.0179862100 0.1192029220 0.0179862100
## [121] 0.8807970780 0.2689414214 0.2689414214 0.2689414214 0.0024726232
## [126] 0.1192029220 0.0009110512 0.2689414214 0.0024726232 0.0179862100
## [131] 0.8807970780 0.2689414214 0.0179862100 0.0179862100 0.7310585786
## [136] 0.0066928509 0.2689414214 0.7310585786 0.2689414214 0.2689414214
## [141] 0.1192029220 0.1192029220 0.0009110512 0.0024726232 0.0179862100
## [146] 0.2689414214 0.2689414214 0.2689414214 0.0179862100 0.7310585786
## [151] 0.1192029220 0.0003353501 0.0024726232 0.0179862100 0.0009110512
## [156] 0.0474258732 0.7310585786 0.1192029220 0.0009110512 0.1192029220
## [161] 0.0474258732 0.1192029220 0.0474258732 0.0009110512 0.0009110512
## [166] 0.8807970780 0.0474258732 0.0066928509 0.0474258732 0.0066928509
## [171] 0.2689414214 0.2689414214 0.5000000000 0.0474258732 0.1192029220
## [176] 0.2689414214 0.0066928509 0.5000000000 0.1192029220 0.0179862100
## [181] 0.0474258732 0.0066928509 0.5000000000 0.0024726232 0.2689414214
## [186] 0.0003353501 0.0179862100 0.2689414214 0.0474258732 0.5000000000
## [191] 0.0474258732 0.0179862100 0.0066928509 0.2689414214 0.8807970780
## [196] 0.0179862100 0.0179862100 0.8807970780 0.2689414214 0.2689414214
set.seed(2345)
Y <- rbinom(n,1,p)
Y
## [1] 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0
## [38] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
## [75] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
## [112] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1
## [149] 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
## [186] 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0
datagab <- data.frame(Y,X1,X2,X3,X4)
datagab
## Y X1 X2 X3 X4
## 1 0 0 0 0 0
## 2 1 1 1 1 0
## 3 0 0 1 0 1
## 4 0 1 1 0 0
## 5 0 1 1 0 0
## 6 0 0 1 1 0
## 7 0 1 0 1 0
## 8 0 1 0 1 1
## 9 0 1 1 0 1
## 10 0 0 1 0 1
## 11 1 1 1 1 0
## 12 0 0 1 1 0
## 13 0 1 0 0 1
## 14 1 1 1 1 1
## 15 0 0 0 1 0
## 16 0 1 1 0 1
## 17 0 0 0 0 0
## 18 0 0 0 0 1
## 19 0 0 0 1 0
## 20 0 1 0 0 1
## 21 1 1 0 1 1
## 22 0 1 0 1 1
## 23 0 1 0 1 1
## 24 0 1 0 0 1
## 25 0 1 0 1 1
## 26 0 1 1 0 1
## 27 1 1 1 0 0
## 28 1 1 1 0 1
## 29 0 0 1 1 1
## 30 0 0 0 0 0
## 31 0 1 0 0 0
## 32 0 1 0 1 1
## 33 1 1 0 1 0
## 34 1 1 1 0 1
## 35 0 0 0 0 1
## 36 0 0 1 0 1
## 37 0 1 0 0 1
## 38 0 0 0 1 1
## 39 0 0 1 0 0
## 40 0 0 1 1 0
## 41 0 0 1 0 1
## 42 0 0 1 0 0
## 43 0 0 0 0 0
## 44 0 0 1 0 1
## 45 0 0 0 1 1
## 46 1 0 1 0 1
## 47 0 0 1 0 1
## 48 0 0 0 1 0
## 49 0 0 0 1 0
## 50 0 1 1 0 0
## 51 0 0 0 1 1
## 52 0 0 0 1 1
## 53 1 1 1 1 0
## 54 0 0 1 0 0
## 55 0 1 0 1 1
## 56 0 0 1 0 0
## 57 0 0 0 1 0
## 58 1 1 1 0 1
## 59 0 1 0 0 1
## 60 0 0 1 1 0
## 61 1 1 1 1 1
## 62 0 0 0 0 1
## 63 0 0 0 1 0
## 64 0 0 0 0 1
## 65 0 1 0 0 1
## 66 1 0 1 1 1
## 67 0 1 0 1 1
## 68 0 1 1 0 1
## 69 0 1 0 0 1
## 70 0 0 1 0 1
## 71 0 1 0 0 0
## 72 0 1 1 0 1
## 73 0 1 0 1 1
## 74 0 0 1 0 1
## 75 0 0 0 0 0
## 76 0 0 1 1 0
## 77 0 0 0 1 0
## 78 0 1 0 0 0
## 79 0 0 0 1 0
## 80 0 0 1 0 1
## 81 1 0 1 1 1
## 82 0 1 0 0 1
## 83 0 0 0 1 1
## 84 0 1 1 0 1
## 85 0 0 0 1 0
## 86 0 0 1 1 1
## 87 0 1 0 0 0
## 88 0 1 0 1 1
## 89 0 1 0 1 0
## 90 1 0 1 1 0
## 91 0 0 0 1 0
## 92 1 1 1 0 1
## 93 0 0 0 0 1
## 94 1 1 0 1 0
## 95 0 0 0 1 1
## 96 0 0 1 0 1
## 97 0 1 0 0 1
## 98 0 0 0 1 0
## 99 0 0 0 1 1
## 100 1 1 1 1 0
## 101 0 1 0 0 1
## 102 0 0 1 0 0
## 103 0 0 0 1 0
## 104 0 1 0 1 1
## 105 0 0 0 0 0
## 106 0 1 0 0 1
## 107 0 1 0 0 0
## 108 0 1 0 0 0
## 109 0 0 0 1 1
## 110 0 0 0 1 1
## 111 0 1 1 1 0
## 112 0 0 0 1 0
## 113 0 0 1 0 0
## 114 0 1 0 0 1
## 115 0 1 0 1 1
## 116 0 0 1 0 0
## 117 0 1 1 0 0
## 118 0 1 0 0 1
## 119 0 1 0 1 1
## 120 0 0 1 0 0
## 121 0 1 1 1 1
## 122 0 0 1 1 1
## 123 0 0 1 1 1
## 124 1 0 1 1 1
## 125 0 0 0 1 0
## 126 0 1 0 1 1
## 127 0 0 0 0 1
## 128 1 0 1 1 1
## 129 0 0 0 1 0
## 130 0 1 0 0 1
## 131 1 1 1 1 1
## 132 1 1 1 0 0
## 133 0 1 0 0 1
## 134 0 1 0 0 1
## 135 1 1 1 1 0
## 136 0 1 0 0 0
## 137 0 1 1 0 0
## 138 1 1 1 1 0
## 139 0 1 1 0 0
## 140 0 0 1 1 1
## 141 0 0 1 1 0
## 142 0 0 1 1 0
## 143 0 0 0 0 1
## 144 0 0 0 1 0
## 145 0 1 0 0 1
## 146 0 0 1 1 1
## 147 1 0 1 1 1
## 148 1 0 1 1 1
## 149 0 0 1 0 0
## 150 0 1 1 1 0
## 151 0 1 0 1 1
## 152 0 0 0 0 0
## 153 0 0 0 1 0
## 154 0 0 1 0 0
## 155 0 0 0 0 1
## 156 0 0 1 0 1
## 157 1 1 1 1 0
## 158 0 0 1 1 0
## 159 0 0 0 0 1
## 160 1 0 1 1 0
## 161 0 1 0 1 0
## 162 0 0 1 1 0
## 163 0 1 0 1 0
## 164 0 0 0 0 1
## 165 0 0 0 0 1
## 166 1 1 1 1 1
## 167 0 1 0 1 0
## 168 0 0 0 1 1
## 169 1 0 1 0 1
## 170 0 0 0 1 1
## 171 0 1 1 0 0
## 172 1 0 1 1 1
## 173 1 1 1 0 1
## 174 0 1 0 1 0
## 175 0 1 0 1 1
## 176 0 1 1 0 0
## 177 0 0 0 1 1
## 178 0 1 1 0 1
## 179 0 1 0 1 1
## 180 0 1 0 0 1
## 181 1 1 0 1 0
## 182 0 0 0 1 1
## 183 0 1 1 0 1
## 184 0 0 0 1 0
## 185 0 1 1 0 0
## 186 0 0 0 0 0
## 187 0 0 1 0 0
## 188 0 1 1 0 0
## 189 0 1 0 1 0
## 190 0 1 1 0 1
## 191 0 0 1 0 1
## 192 0 0 1 0 0
## 193 0 1 0 0 0
## 194 1 1 1 0 0
## 195 1 1 1 1 1
## 196 0 0 1 0 0
## 197 0 0 1 0 0
## 198 1 1 1 1 1
## 199 1 0 1 1 1
## 200 0 1 1 0 0
modelreglog <- glm(Y~X1+X2+X3+X4,family = binomial(link = "logit"),data=datagab)
summary(modelreglog)
##
## Call:
## glm(formula = Y ~ X1 + X2 + X3 + X4, family = binomial(link = "logit"),
## data = datagab)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -7.1255 1.1252 -6.333 2.41e-10 ***
## X1 2.0884 0.5653 3.694 0.000221 ***
## X2 3.7763 0.6995 5.399 6.71e-08 ***
## X3 2.5408 0.5741 4.426 9.60e-06 ***
## X4 0.7261 0.4802 1.512 0.130550
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 191.56 on 199 degrees of freedom
## Residual deviance: 119.47 on 195 degrees of freedom
## AIC: 129.47
##
## Number of Fisher Scoring iterations: 6
XI = Keterangan KTP ( yang aktif = 107, Tidak aktif = 93 ) X2 = keterangan SIM ( yang aktif = 96 , Tidak aktif = 104 ) X3 = keterangan Asuransi ( yang aktif = 101 , Tidak aktif = 99 ) X4 = Keterangan jaminan pembayaran ( Yang aktif = 91 , Tidak aktif = 109)
Bahwa pada analisis regresinya sangat mempengaruhi pada X1, X2, X3, DAN x4. Karena dengan Kofisien nilai Bo= -8, BI= 3, B2= 4, B3= 2, B4= 1 dan pengujian dengan rumus B0+(B1 x X1)+(B2 x X2)+(B3 x X3)+(B4 x X4) semua data berpengaruh. Jadi data semua data ini saling keterkaitan pengaruh satu sama lain.