X1: Triase Pasien
set.seed(123)
n <- 100
u <- runif(n)
x1 <- round(3*(-(log(1-u)/0.8)))
x1
## [1] 1 6 2 8 11 0 3 8 3 2 12 2 4 3 0 9 1 0 1 12 8 4 4 19 4
## [26] 5 3 3 1 1 12 9 4 6 0 2 5 1 1 1 1 2 2 2 1 1 1 2 1 7
## [51] 0 2 6 0 3 1 1 5 8 2 4 0 2 1 6 2 6 6 6 2 5 4 5 0 2
## [76] 1 2 4 2 0 1 4 2 6 0 2 16 8 8 1 1 4 2 4 1 1 6 0 2 3
X2: Jumlah Pasien di UGD
set.seed(123)
x2 <- round(runif(n, 10, 30))
x2
## [1] 16 26 18 28 29 11 21 28 21 19 29 19 24 21 12 28 15 11 17 29 28 24 23 30 23
## [26] 24 21 22 16 13 29 28 24 26 10 20 25 14 16 15 13 18 18 17 13 13 15 19 15 27
## [51] 11 19 26 12 21 14 13 25 28 17 23 12 18 15 26 19 26 26 26 19 25 23 24 10 20
## [76] 14 18 22 17 12 15 23 18 26 12 19 30 28 28 14 13 23 17 23 16 14 26 12 19 20
X3: Jam Kedatangan Pasien
set.seed(123)
x3 <- round(runif(n, 0, 23))
x3
## [1] 7 18 9 20 22 1 12 21 13 11 22 10 16 13 2 21 6 1 8 22 20 16 15 23 15
## [26] 16 13 14 7 3 22 21 16 18 1 11 17 5 7 5 3 10 10 8 4 3 5 11 6 20
## [51] 1 10 18 3 13 5 3 17 21 9 15 2 9 6 19 10 19 19 18 10 17 14 16 0 11
## [76] 5 9 14 8 3 6 15 10 18 2 10 23 21 20 4 3 15 8 15 7 4 18 2 11 12
menentukan Koefesien
b0 <- 10
b1 <- 5
b2 <- 2
b3 <- 1
set.seed(23)
datapendukung <- b0 + (b1 * x1) + (b2 * x2) + (b3 * x3)
lama_tunggu <- datapendukung
lama_tunggu
## [1] 54 110 65 126 145 33 79 127 80 69 150 68 94 80 36 132 51 33
## [19] 57 150 126 94 91 188 91 99 80 83 54 44 150 132 94 110 31 71
## [37] 102 48 54 50 44 66 66 62 45 44 50 69 51 119 33 68 110 37
## [55] 80 48 44 102 127 63 91 36 65 51 111 68 111 111 110 68 102 90
## [73] 99 30 71 48 65 88 62 37 51 91 66 110 36 68 173 127 126 47
## [91] 44 91 62 91 54 47 110 36 69 77
datagab <- data.frame(lama_tunggu,x1,x2,x3)
datagab
## lama_tunggu x1 x2 x3
## 1 54 1 16 7
## 2 110 6 26 18
## 3 65 2 18 9
## 4 126 8 28 20
## 5 145 11 29 22
## 6 33 0 11 1
## 7 79 3 21 12
## 8 127 8 28 21
## 9 80 3 21 13
## 10 69 2 19 11
## 11 150 12 29 22
## 12 68 2 19 10
## 13 94 4 24 16
## 14 80 3 21 13
## 15 36 0 12 2
## 16 132 9 28 21
## 17 51 1 15 6
## 18 33 0 11 1
## 19 57 1 17 8
## 20 150 12 29 22
## 21 126 8 28 20
## 22 94 4 24 16
## 23 91 4 23 15
## 24 188 19 30 23
## 25 91 4 23 15
## 26 99 5 24 16
## 27 80 3 21 13
## 28 83 3 22 14
## 29 54 1 16 7
## 30 44 1 13 3
## 31 150 12 29 22
## 32 132 9 28 21
## 33 94 4 24 16
## 34 110 6 26 18
## 35 31 0 10 1
## 36 71 2 20 11
## 37 102 5 25 17
## 38 48 1 14 5
## 39 54 1 16 7
## 40 50 1 15 5
## 41 44 1 13 3
## 42 66 2 18 10
## 43 66 2 18 10
## 44 62 2 17 8
## 45 45 1 13 4
## 46 44 1 13 3
## 47 50 1 15 5
## 48 69 2 19 11
## 49 51 1 15 6
## 50 119 7 27 20
## 51 33 0 11 1
## 52 68 2 19 10
## 53 110 6 26 18
## 54 37 0 12 3
## 55 80 3 21 13
## 56 48 1 14 5
## 57 44 1 13 3
## 58 102 5 25 17
## 59 127 8 28 21
## 60 63 2 17 9
## 61 91 4 23 15
## 62 36 0 12 2
## 63 65 2 18 9
## 64 51 1 15 6
## 65 111 6 26 19
## 66 68 2 19 10
## 67 111 6 26 19
## 68 111 6 26 19
## 69 110 6 26 18
## 70 68 2 19 10
## 71 102 5 25 17
## 72 90 4 23 14
## 73 99 5 24 16
## 74 30 0 10 0
## 75 71 2 20 11
## 76 48 1 14 5
## 77 65 2 18 9
## 78 88 4 22 14
## 79 62 2 17 8
## 80 37 0 12 3
## 81 51 1 15 6
## 82 91 4 23 15
## 83 66 2 18 10
## 84 110 6 26 18
## 85 36 0 12 2
## 86 68 2 19 10
## 87 173 16 30 23
## 88 127 8 28 21
## 89 126 8 28 20
## 90 47 1 14 4
## 91 44 1 13 3
## 92 91 4 23 15
## 93 62 2 17 8
## 94 91 4 23 15
## 95 54 1 16 7
## 96 47 1 14 4
## 97 110 6 26 18
## 98 36 0 12 2
## 99 69 2 19 11
## 100 77 3 20 12
modelreglin <- lm(lama_tunggu~x1+x2+x3, data=datagab)
summary(modelreglin)
## Warning in summary.lm(modelreglin): essentially perfect fit: summary may be
## unreliable
##
## Call:
## lm(formula = lama_tunggu ~ x1 + x2 + x3, data = datagab)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.682e-15 -4.315e-15 -3.552e-15 -8.780e-16 1.512e-13
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.000e+01 4.691e-14 2.132e+14 <2e-16 ***
## x1 5.000e+00 1.032e-15 4.846e+15 <2e-16 ***
## x2 2.000e+00 4.650e-15 4.301e+14 <2e-16 ***
## x3 1.000e+00 4.035e-15 2.478e+14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.725e-14 on 96 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.336e+32 on 3 and 96 DF, p-value: < 2.2e-16