PROSES PEMBANGKITAN DATA KELULUSAN UJIAN AKHIR

Skenario

Y: Kelulusan Ujian Akhir
X1: Jam belajar
X2: Kesulitan soal
X3: Tingkat stres
X4: Dukungan orang tua

Membangkitkan Data X1 (Jam Belajar)

X1 : Jam Belajar (hour)
Membangkitkan variabel X1 dengan rentang waktu belajar minimal 0 jam hingga maksimal 12 jam dan banyaknya data pelajar adalah 100

min_hours <- 0
max_hours <- 12
set.seed(100)
x1 <- runif(100, min = min_hours, max = max_hours)
x1
##   [1]  3.6931933  3.0920700  6.6278692  0.6765978  5.6225914  5.8052488
##   [7]  9.7488314  4.4438464  6.5587031  2.0431446  7.4999577 10.5859862
##  [13]  3.3642461  4.7818548  9.1506130  8.0282605  2.4553459  4.2902982
##  [19]  4.3137014  8.2834863  6.4297338  8.5296461  6.4601844  8.9876667
##  [25]  5.0412174  2.0570426  9.2436193 10.5834431  6.5891605  3.3326851
##  [31]  5.8596719 11.1420609  4.1843038 11.4498925  8.3432897 10.6734425
##  [37]  2.1648869  7.5526902 11.8747696  1.5634664  3.9679263 10.3814466
##  [43]  9.3310133  9.9276414  7.2398923  5.8947819  9.3643021 10.6107243
##  [49]  2.4925668  3.6850308  3.9663582  2.3841488  2.8283316  3.2986399
##  [55]  7.0958526  3.0406878  1.4818468  2.7588706  7.1709035  2.5369027
##  [61]  5.5644141  7.7652143 11.5268771  8.1167781  5.3417763  4.2932854
##  [67]  5.4687775  5.3449677  2.9411111  8.3322085  4.9468444  3.9327104
##  [73]  6.8707772 11.6039890  7.9413483  7.4963726 10.2798365  9.2973467
##  [79] 10.0083252  1.0981233  5.5143058  7.1927779 11.0366629 11.7938889
##  [85]  0.4536310  6.9352488  8.7997700  2.9849088  3.6088383  8.8016004
##  [91] 10.8834525  2.5178012  4.2976559  5.3795897 10.8771172  4.6732715
##  [97]  6.2095170  1.5028691  0.3617489  9.2616659

Membangkitkan Data X2

X2 : Kesulitan Soal
Membangkitkan variabel x2 dengan kesulitan soal 1 (Mudah) hingga 10 (Sulit) dengan 100 data

set.seed(100)
min_difficulty <- 1
max_difficulty <- 10

x2 <- runif(100, min = min_difficulty, max = max_difficulty)
x2
##   [1] 3.769895 3.319053 5.970902 1.507448 5.216944 5.353937 8.311624 4.332885
##   [9] 5.919027 2.532358 6.624968 8.939490 3.523185 4.586391 7.862960 7.021195
##  [17] 2.841509 4.217724 4.235276 7.212615 5.822300 7.397235 5.845138 7.740750
##  [25] 4.780913 2.542782 7.932714 8.937582 5.941870 3.499514 5.394754 9.356546
##  [33] 4.138228 9.587419 7.257467 9.005082 2.623665 6.664518 9.906077 2.172600
##  [41] 3.975945 8.786085 7.998260 8.445731 6.429919 5.421086 8.023227 8.958043
##  [49] 2.869425 3.763773 3.974769 2.788112 3.121249 3.473980 6.321889 3.280516
##  [57] 2.111385 3.069153 6.378178 2.902677 5.173311 6.823911 9.645158 7.087584
##  [65] 5.006332 4.219964 5.101583 5.008726 3.205833 7.249156 4.710133 3.949533
##  [73] 6.153083 9.702992 6.956011 6.622279 8.709877 7.973010 8.506244 1.823593
##  [81] 5.135729 6.394583 9.277497 9.845417 1.340223 6.201437 7.599828 3.238682
##  [89] 3.706629 7.601200 9.162589 2.888351 4.223242 5.034692 9.157838 4.504954
##  [97] 5.657138 2.127152 1.271312 7.946249

Membangkitkan Data X3

x3 : Tingkat Stress
Membangkitkan variabel X3 yakni Tingkatan Stress dengan rentang 0 (Tidak Stress) hingga 1 (Stress)

set.seed(100)
n <- 100
x3 <- round(runif(n))
x3
##   [1] 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0
##  [38] 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1
##  [75] 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1

Membangkitkan Data X4

X4 : Dukungan Ortu
Membangkitkan variabel X4 yakni Dukungan Orang Tua dengan rentang 0 (Tidak Didukung); 1 (Di Dukung); 2 (Sangat Didukung)

set.seed(100)
dukung_ortu <- c(0, 1, 2)  
dukung_probs <- c(0.2,0.3, 0.5) 
x4 <- sample(dukung_ortu, 100, replace = TRUE, prob = dukung_probs)
x4
##   [1] 2 2 1 2 2 2 0 2 1 2 1 0 2 2 1 1 2 2 2 1 1 1 1 1 2 2 1 0 1 2 2 0 2 0 1 0 2
##  [38] 1 0 2 2 0 1 0 1 2 1 0 2 2 2 2 2 2 1 2 2 2 1 2 2 1 0 1 2 2 2 2 2 1 2 2 1 0
##  [75] 1 1 0 1 0 2 2 1 0 0 2 1 1 2 2 1 0 2 2 2 0 2 1 2 2 1

Membangkitkan Data Y

Menentukan Koefesien Regresi

b0 <- -3.9
b1 <- 1
b2 <- -0.4
b3 <- -0.5
b4 <- 0.7
set.seed(2)
datasup <- b0+(b1*x1)+(b2*x2)+(b3*x3)+(b4*x4)
datasup
##   [1] -0.31476467 -0.73555099  0.53950844 -2.42638154  1.03581398  1.16367417
##   [7]  2.02418199  0.21069251  0.49109220 -1.46979877  1.14997041  2.61019035
##  [13] -0.54502774  0.44729837  2.30542909  1.51978238 -1.18125784  0.10320877
##  [19]  0.11959096  1.69844044  0.40081369  1.87075230  0.42212907  2.19136671
##  [25]  0.62885218 -1.46007021  2.37053352  2.60841014  0.51241237 -0.56712044
##  [31]  1.20177035  2.99944263  0.02901265  3.21492474  1.74030277  2.67140973
##  [37] -1.38457914  1.18688314  3.51233875 -1.80557349 -0.12245158  2.46701259
##  [43]  2.43170929  2.14934898  0.96792459  1.22634730  2.45501149  2.62750703
##  [49] -1.15520326 -0.32047847 -0.12354928 -1.23109581 -0.92016786 -0.59095205
##  [55]  0.86709685 -0.77151851 -1.86270726 -0.96879055  0.91963245 -1.12416813
##  [61]  0.99508990  1.33565003  3.26881397  1.58174464  0.83924338  0.10529978
##  [67]  0.92814423  0.84147741 -0.84122225  1.73254598  0.56279109 -0.14710270
##  [73]  0.70954404  3.32279231  1.45894379  1.14746082  2.39588556  2.40814266
##  [79]  2.20582763 -2.13131366  0.96001409  0.93494451  2.92566405  3.45572225
##  [85] -2.58245833  0.75467417  2.05983901 -0.81056382 -0.37381319  2.06112029
##  [91]  2.81841675 -1.13753915  0.10835911  0.86571281  2.81398204  0.37129008
##  [97]  0.24666190 -1.84799166 -2.64677574  2.38316615
p <- exp(datasup)/(1+exp(datasup))
p
##   [1] 0.42195217 0.32397778 0.63169806 0.08118297 0.73804150 0.76199969
##   [7] 0.88331274 0.55247914 0.62036369 0.18697320 0.75950551 0.93151454
##  [13] 0.36701878 0.60999671 0.90932568 0.82050643 0.23482611 0.52577931
##  [19] 0.52986216 0.84533094 0.59888314 0.86654530 0.60399260 0.89947155
##  [25] 0.65222915 0.18845659 0.91455256 0.93140088 0.62537182 0.36190153
##  [31] 0.76883957 0.95254894 0.50725265 0.96139207 0.85072552 0.93531837
##  [37] 0.20027458 0.76618315 0.97103681 0.14117396 0.46942530 0.92179668
##  [43] 0.91921356 0.89560793 0.72470563 0.77317863 0.92092716 0.93261104
##  [49] 0.23953997 0.42055915 0.46915191 0.22598969 0.28492369 0.35641644
##  [55] 0.70414125 0.31615071 0.13438781 0.27512164 0.71496721 0.24523896
##  [61] 0.73009210 0.79177368 0.96334331 0.82945146 0.69830584 0.52630065
##  [67] 0.71669864 0.69877628 0.30127743 0.84973779 0.63709810 0.46329050
##  [73] 0.67030040 0.96520250 0.81137108 0.75904682 0.91651302 0.91744612
##  [79] 0.90077161 0.10609035 0.72312463 0.71807734 0.94910062 0.96940133
##  [85] 0.07027594 0.68019632 0.88693803 0.30777036 0.40761994 0.88706645
##  [91] 0.94366296 0.24277246 0.52706330 0.70385284 0.94342673 0.59177067
##  [97] 0.56135471 0.13610887 0.06618801 0.91553460
set.seed(3)
y <- rbinom(n,1,p)
y
##   [1] 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 0
##  [75] 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 1
datagab <- data.frame(y,x1,x2,x3,x4)
datagab
##     y         x1       x2 x3 x4
## 1   0  3.6931933 3.769895  0  2
## 2   1  3.0920700 3.319053  0  2
## 3   1  6.6278692 5.970902  1  1
## 4   0  0.6765978 1.507448  0  2
## 5   1  5.6225914 5.216944  0  2
## 6   1  5.8052488 5.353937  0  2
## 7   1  9.7488314 8.311624  1  0
## 8   1  4.4438464 4.332885  0  2
## 9   1  6.5587031 5.919027  1  1
## 10  0  2.0431446 2.532358  0  2
## 11  1  7.4999577 6.624968  1  1
## 12  1 10.5859862 8.939490  1  0
## 13  0  3.3642461 3.523185  0  2
## 14  1  4.7818548 4.586391  0  2
## 15  1  9.1506130 7.862960  1  1
## 16  0  8.0282605 7.021195  1  1
## 17  0  2.4553459 2.841509  0  2
## 18  0  4.2902982 4.217724  0  2
## 19  0  4.3137014 4.235276  0  2
## 20  1  8.2834863 7.212615  1  1
## 21  1  6.4297338 5.822300  1  1
## 22  1  8.5296461 7.397235  1  1
## 23  1  6.4601844 5.845138  1  1
## 24  1  8.9876667 7.740750  1  1
## 25  1  5.0412174 4.780913  0  2
## 26  0  2.0570426 2.542782  0  2
## 27  1  9.2436193 7.932714  1  1
## 28  1 10.5834431 8.937582  1  0
## 29  1  6.5891605 5.941870  1  1
## 30  1  3.3326851 3.499514  0  2
## 31  1  5.8596719 5.394754  0  2
## 32  1 11.1420609 9.356546  1  0
## 33  1  4.1843038 4.138228  0  2
## 34  1 11.4498925 9.587419  1  0
## 35  1  8.3432897 7.257467  1  1
## 36  1 10.6734425 9.005082  1  0
## 37  1  2.1648869 2.623665  0  2
## 38  1  7.5526902 6.664518  1  1
## 39  1 11.8747696 9.906077  1  0
## 40  0  1.5634664 2.172600  0  2
## 41  0  3.9679263 3.975945  0  2
## 42  1 10.3814466 8.786085  1  0
## 43  1  9.3310133 7.998260  1  1
## 44  1  9.9276414 8.445731  1  0
## 45  1  7.2398923 6.429919  1  1
## 46  1  5.8947819 5.421086  0  2
## 47  1  9.3643021 8.023227  1  1
## 48  1 10.6107243 8.958043  1  0
## 49  0  2.4925668 2.869425  0  2
## 50  1  3.6850308 3.763773  0  2
## 51  0  3.9663582 3.974769  0  2
## 52  0  2.3841488 2.788112  0  2
## 53  1  2.8283316 3.121249  0  2
## 54  1  3.2986399 3.473980  0  2
## 55  0  7.0958526 6.321889  1  1
## 56  1  3.0406878 3.280516  0  2
## 57  0  1.4818468 2.111385  0  2
## 58  0  2.7588706 3.069153  0  2
## 59  1  7.1709035 6.378178  1  1
## 60  0  2.5369027 2.902677  0  2
## 61  0  5.5644141 5.173311  0  2
## 62  1  7.7652143 6.823911  1  1
## 63  1 11.5268771 9.645158  1  0
## 64  1  8.1167781 7.087584  1  1
## 65  0  5.3417763 5.006332  0  2
## 66  1  4.2932854 4.219964  0  2
## 67  0  5.4687775 5.101583  0  2
## 68  1  5.3449677 5.008726  0  2
## 69  0  2.9411111 3.205833  0  2
## 70  1  8.3322085 7.249156  1  1
## 71  0  4.9468444 4.710133  0  2
## 72  1  3.9327104 3.949533  0  2
## 73  0  6.8707772 6.153083  1  1
## 74  0 11.6039890 9.702992  1  0
## 75  1  7.9413483 6.956011  1  1
## 76  1  7.4963726 6.622279  1  1
## 77  1 10.2798365 8.709877  1  0
## 78  1  9.2973467 7.973010  1  1
## 79  1 10.0083252 8.506244  1  0
## 80  0  1.0981233 1.823593  0  2
## 81  0  5.5143058 5.135729  0  2
## 82  1  7.1927779 6.394583  1  1
## 83  1 11.0366629 9.277497  1  0
## 84  1 11.7938889 9.845417  1  0
## 85  1  0.4536310 1.340223  0  2
## 86  0  6.9352488 6.201437  1  1
## 87  1  8.7997700 7.599828  1  1
## 88  0  2.9849088 3.238682  0  2
## 89  1  3.6088383 3.706629  0  2
## 90  0  8.8016004 7.601200  1  1
## 91  1 10.8834525 9.162589  1  0
## 92  0  2.5178012 2.888351  0  2
## 93  1  4.2976559 4.223242  0  2
## 94  0  5.3795897 5.034692  0  2
## 95  1 10.8771172 9.157838  1  0
## 96  1  4.6732715 4.504954  0  2
## 97  1  6.2095170 5.657138  1  1
## 98  0  1.5028691 2.127152  0  2
## 99  0  0.3617489 1.271312  0  2
## 100 1  9.2616659 7.946249  1  1

Analisis Regresi Logistik

modelreglog <- glm(y~x1+x2+x3+x4, family = binomial(link = "logit"), data=datagab)
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients: (1 not defined because of singularities)
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -1.90751    2.99031  -0.638   0.5235  
## x1           0.40853    0.19276   2.119   0.0341 *
## x2                NA         NA      NA       NA  
## x3           0.34385    1.46382   0.235   0.8143  
## x4           0.09566    1.28963   0.074   0.9409  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 128.207  on 99  degrees of freedom
## Residual deviance:  99.134  on 96  degrees of freedom
## AIC: 107.13
## 
## Number of Fisher Scoring iterations: 5

KESIMPULAN

Model regresi ini memperkirakan tentang kelulusan siswa di Ujian Akhir dengan 4 parameter, yakni lama belajar, tingkat kesulitan soal, tingkat stress siswa, dan dukungan orang tua. Variabel yang paling berpengaruh untuk kelulusan disini adalah lama belajar dan dukungan orang tua. Semakin lama waktu belajar dan semakin banyak dukungan ortu akan mempengaruhi kelulusan. Namun, kesulitan soal dan tingkat stress juga akan berpengaruh. Semakin sulit soal dan semakin tinggi tingkat stress akan menggugurkan siswa di ujian akhir.
Nilai akhir (Y) yang menunjukkan nilai 0 berarti siswa tidak lulus ujian akhir, sedangkan nilai 1 berarti siswa lulus ujian.