Loading Packages

haven

if (!require(haven)){
  install.packages("haven", dependencies = TRUE)
  library(haven)
}

tidyverse

if (!require(tidyverse)){
  install.packages("tidyverse", dependencies = TRUE)
  library(tidyverse)
}

afex

if (!require(afex)){
  install.packages("afex", dependencies = TRUE)
  library(afex)
}

Import Data

dataset <- read_sav("https://osf.io/p5rqv/download")
colnames(dataset)

Remove Duplicate Rows from the Dataset

dataset %>% #start with dataset
  distinct(Subject, .keep_all = TRUE) -> dataset.unique

Run the ANVOA - Output

(dataset.unique.aov <- aov_ez(id = "Subject", dv = "RaceDFeb", data = dataset.unique, between=c("TrainTyp", "EC")))
Converting to factor: TrainTyp, EC
Contrasts set to contr.sum for the following variables: TrainTyp, EC
Anova Table (Type 3 tests)

Response: RaceDFeb
       Effect     df  MSE         F   ges p.value
1    TrainTyp 1, 670 0.17      0.51 <.001    .477
2          EC 1, 670 0.17 12.40 ***  .018   <.001
3 TrainTyp:EC 1, 670 0.17      0.00 <.001    .961
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1
(dataset.unique %>% # start with the dataset 
  group_by(EC) %>% # group by the training goal variable
  summarise(mean = mean(RaceDFeb), # get the mean of the DV in each group
            SD = sd(RaceDFeb)) -> trainingGoalDescriptives) # get the SD of the DV in each group
LS0tCnRpdGxlOiAiTGVhcm4gUjogQU5PVkFzIgphdXRob3I6ICJDcnlzdGFsIEJ1cmtlIgpmb3JtYXQ6IGh0bWwKb3V0cHV0OiAKICBodG1sX25vdGVib29rOiAKICAgIHRoZW1lOiBkYXJrbHkKICAgIHRvYzogeWVzCiAgICB0b2NfZmxvYXQ6IHllcwotLS0KCgojIExvYWRpbmcgUGFja2FnZXMgey50YWJzZXR9CgojIyBoYXZlbgoKYGBge3J9CmlmICghcmVxdWlyZShoYXZlbikpewogIGluc3RhbGwucGFja2FnZXMoImhhdmVuIiwgZGVwZW5kZW5jaWVzID0gVFJVRSkKICBsaWJyYXJ5KGhhdmVuKQp9CmBgYAoKIyMgdGlkeXZlcnNlCgpgYGB7cn0KaWYgKCFyZXF1aXJlKHRpZHl2ZXJzZSkpewogIGluc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIsIGRlcGVuZGVuY2llcyA9IFRSVUUpCiAgbGlicmFyeSh0aWR5dmVyc2UpCn0KYGBgCgojIyBhZmV4CgpgYGB7cn0KaWYgKCFyZXF1aXJlKGFmZXgpKXsKICBpbnN0YWxsLnBhY2thZ2VzKCJhZmV4IiwgZGVwZW5kZW5jaWVzID0gVFJVRSkKICBsaWJyYXJ5KGFmZXgpCn0KYGBgCgojIEltcG9ydCBEYXRhCgpgYGB7cn0KZGF0YXNldCA8LSByZWFkX3NhdigiaHR0cHM6Ly9vc2YuaW8vcDVycXYvZG93bmxvYWQiKQpjb2xuYW1lcyhkYXRhc2V0KQpgYGAKCiMgUmVtb3ZlIER1cGxpY2F0ZSBSb3dzIGZyb20gdGhlIERhdGFzZXQKCmBgYHtyfQpkYXRhc2V0ICU+JSAjc3RhcnQgd2l0aCBkYXRhc2V0CiAgZGlzdGluY3QoU3ViamVjdCwgLmtlZXBfYWxsID0gVFJVRSkgLT4gZGF0YXNldC51bmlxdWUKYGBgCgojIFJ1biB0aGUgQU5WT0EgLSBPdXRwdXQKCmBgYHtyfQooZGF0YXNldC51bmlxdWUuYW92IDwtIGFvdl9leihpZCA9ICJTdWJqZWN0IiwgZHYgPSAiUmFjZURGZWIiLCBkYXRhID0gZGF0YXNldC51bmlxdWUsIGJldHdlZW49YygiVHJhaW5UeXAiLCAiRUMiKSkpCmBgYAoKYGBge3J9CihkYXRhc2V0LnVuaXF1ZSAlPiUgIyBzdGFydCB3aXRoIHRoZSBkYXRhc2V0IAogIGdyb3VwX2J5KEVDKSAlPiUgIyBncm91cCBieSB0aGUgdHJhaW5pbmcgZ29hbCB2YXJpYWJsZQogIHN1bW1hcmlzZShtZWFuID0gbWVhbihSYWNlREZlYiksICMgZ2V0IHRoZSBtZWFuIG9mIHRoZSBEViBpbiBlYWNoIGdyb3VwCiAgICAgICAgICAgIFNEID0gc2QoUmFjZURGZWIpKSAtPiB0cmFpbmluZ0dvYWxEZXNjcmlwdGl2ZXMpICMgZ2V0IHRoZSBTRCBvZiB0aGUgRFYgaW4gZWFjaCBncm91cApgYGAKCgo=