train <- data.frame(claimID = c(1,2,3),
rearend = c(TRUE, FALSE, TRUE),
fraud = c (TRUE, FALSE, TRUE))
train
## claimID rearend fraud
## 1 1 TRUE TRUE
## 2 2 FALSE FALSE
## 3 3 TRUE TRUE
library(rpart)
mytree <- rpart(fraud~rearend, data=train, method= "class")
#predict weather there was fraud or not depeding on nthe rear end attribute
#if we want to add an extra attribute we would add a + after each attribute
# its a classification problem so method is class
# if we want to predict a value we would set method to 'anova'
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 TRUE (0.3333333 0.6666667) *
mytree<- rpart(fraud~rearend,
data = train,
method = "class",
minsplit =2,
minbucket=1)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 TRUE (0.3333333 0.6666667)
## 2) rearend< 0.5 1 0 FALSE (1.0000000 0.0000000) *
## 3) rearend>=0.5 2 0 TRUE (0.0000000 1.0000000) *
library(rattle)
## Loading required package: tibble
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.5.1 Copyright (c) 2006-2021 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart.plot)
library(RColorBrewer)
fancyRpartPlot(mytree, caption=NULL)
mytree<- rpart(
fraud~rearend,
data=train,
method = "class",
parms = list(split='information'),
minsplit =2, minbucket =1
)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 TRUE (0.3333333 0.6666667)
## 2) rearend< 0.5 1 0 FALSE (1.0000000 0.0000000) *
## 3) rearend>=0.5 2 0 TRUE (0.0000000 1.0000000) *
fancyRpartPlot(mytree, caption = NULL)
train <- data.frame(claimID = c(1,2,3),
rearend = c(TRUE, FALSE, TRUE),
fraud = c (TRUE, FALSE, FALSE))
train
## claimID rearend fraud
## 1 1 TRUE TRUE
## 2 2 FALSE FALSE
## 3 3 TRUE FALSE
mytree<- rpart(
fraud~rearend,
data=train,
method = "class",
parms = list(split='information'),
minsplit =2, minbucket =1, cp=-1
)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 FALSE (0.6666667 0.3333333)
## 2) rearend< 0.5 1 0 FALSE (1.0000000 0.0000000) *
## 3) rearend>=0.5 2 1 FALSE (0.5000000 0.5000000) *
train <- data.frame(claimID = 1:7,
rearend = c(TRUE,TRUE,FALSE,FALSE,FALSE, FALSE,FALSE),
whiplash = c(TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE),
fraud = c (TRUE,TRUE,TRUE,FALSE,FALSE, FALSE, FALSE))
train
## claimID rearend whiplash fraud
## 1 1 TRUE TRUE TRUE
## 2 2 TRUE TRUE TRUE
## 3 3 FALSE TRUE TRUE
## 4 4 FALSE TRUE FALSE
## 5 5 FALSE TRUE FALSE
## 6 6 FALSE FALSE FALSE
## 7 7 FALSE FALSE FALSE
mytree<- rpart(
fraud~rearend+whiplash,
data=train,
method = "class",
maxdepth=1,
minsplit =2, minbucket =1
)
mytree
## n= 7
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 7 3 FALSE (0.5714286 0.4285714)
## 2) rearend< 0.5 5 1 FALSE (0.8000000 0.2000000) *
## 3) rearend>=0.5 2 0 TRUE (0.0000000 1.0000000) *
fancyRpartPlot(mytree, caption = NULL)
lossmatrix<- matrix(c(0,1,3,0),byrow=TRUE, nrow = 2)
lossmatrix
## [,1] [,2]
## [1,] 0 1
## [2,] 3 0
mytree <-rpart( fraud~rearend+whiplash,
data=train,
method = "class",
maxdepth=1,
minsplit =2, minbucket =1,
parms = list(loss=lossmatrix))
fancyRpartPlot(mytree, caption = NULL)
train <- data.frame(
claimid = c(1,2,3,4,5),
activity = factor (x = c("active", "very active", "very active", "inactive", "very inactive"),
levels = c ("very inactive", "inactive", "active", "very active"), order=TRUE),
fraud = c (FALSE,TRUE, TRUE, FALSE, TRUE)
)
train
## claimid activity fraud
## 1 1 active FALSE
## 2 2 very active TRUE
## 3 3 very active TRUE
## 4 4 inactive FALSE
## 5 5 very inactive TRUE
mytree<- rpart(
fraud~activity,
data=train,
method = "class",
minsplit =2, minbucket =1
)
fancyRpartPlot(mytree, caption = NULL)
train <- data.frame(claimID = 1:10,
rearend = c(TRUE,TRUE,TRUE, FALSE,FALSE,FALSE, FALSE,TRUE, TRUE, FALSE),
whiplash = c(TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE, FALSE, FALSE, TRUE),
activity = factor (x = c("active", "very active", "very active", "inactive", "very inactive","inactive", "very inactive","active", "active", "very active"),
levels = c ("very inactive", "inactive", "active", "very active"), order=TRUE),
fraud = c (FALSE,TRUE,TRUE,FALSE,FALSE,TRUE,TRUE, FALSE, FALSE, TRUE))
train
## claimID rearend whiplash activity fraud
## 1 1 TRUE TRUE active FALSE
## 2 2 TRUE TRUE very active TRUE
## 3 3 TRUE TRUE very active TRUE
## 4 4 FALSE TRUE inactive FALSE
## 5 5 FALSE TRUE very inactive FALSE
## 6 6 FALSE FALSE inactive TRUE
## 7 7 FALSE FALSE very inactive TRUE
## 8 8 TRUE FALSE active FALSE
## 9 9 TRUE FALSE active FALSE
## 10 10 FALSE TRUE very active TRUE
#GROW A FULL TREEE
mytree<- rpart(
fraud~rearend+whiplash+activity,
data=train,
method = "class",
minsplit =2, minbucket =1,
cp=-1
)
fancyRpartPlot(mytree, caption = NULL)
typeof(mytree)
## [1] "list"
print(mytree$method)
## [1] "class"
print(mytree$finalmodel)
## NULL
names(mytree)
## [1] "frame" "where" "call"
## [4] "terms" "cptable" "method"
## [7] "parms" "control" "functions"
## [10] "numresp" "splits" "csplit"
## [13] "variable.importance" "y" "ordered"
mytree$variable.importance
## activity whiplash rearend
## 3.0000000 2.0000000 0.8571429
printcp(mytree)
##
## Classification tree:
## rpart(formula = fraud ~ rearend + whiplash + activity, data = train,
## method = "class", minsplit = 2, minbucket = 1, cp = -1)
##
## Variables actually used in tree construction:
## [1] activity rearend whiplash
##
## Root node error: 5/10 = 0.5
##
## n= 10
##
## CP nsplit rel error xerror xstd
## 1 0.6 0 1.0 2.0 0.00000
## 2 0.2 1 0.4 0.4 0.25298
## 3 -1.0 3 0.0 0.4 0.25298
mytree<- prune(mytree, cp=0.21)
fancyRpartPlot(mytree)
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.