train<-data.frame( ClaimID =c(1,2,3),
RearEnd=c(TRUE, FALSE, TRUE),
Fraud =c(TRUE,FALSE,TRUE))
train
## ClaimID RearEnd Fraud
## 1 1 TRUE TRUE
## 2 2 FALSE FALSE
## 3 3 TRUE TRUE
library(rpart)
## Warning: package 'rpart' was built under R version 4.3.3
mytree<-rpart(Fraud~RearEnd,
data=train,
method="class",
minsplit=2,
minbucket=1)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 TRUE (0.3333333 0.6666667)
## 2) RearEnd< 0.5 1 0 FALSE (1.0000000 0.0000000) *
## 3) RearEnd>=0.5 2 0 TRUE (0.0000000 1.0000000) *
library(rattle)
## Warning: package 'rattle' was built under R version 4.3.3
## Loading required package: tibble
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.5.1 Copyright (c) 2006-2021 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.3.3
library(RColorBrewer)
fancyRpartPlot(mytree,caption =NULL)
mytree<-rpart(
Fraud~RearEnd,
data=train,
method="class",
parms=list(split='information'),
minsplit=2, minbucket=1
)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 TRUE (0.3333333 0.6666667)
## 2) RearEnd< 0.5 1 0 FALSE (1.0000000 0.0000000) *
## 3) RearEnd>=0.5 2 0 TRUE (0.0000000 1.0000000) *
fancyRpartPlot(mytree,caption=NULL)

train<-data.frame( ClaimID =c(1,2,3),
RearEnd=c(TRUE, FALSE, TRUE),
Fraud =c(TRUE,FALSE,FALSE))
train
## ClaimID RearEnd Fraud
## 1 1 TRUE TRUE
## 2 2 FALSE FALSE
## 3 3 TRUE FALSE
mytree<-rpart(
Fraud~RearEnd,
data=train,
method="class",
minsplit=2, minbucket=1,
cp=-1
)
mytree
## n= 3
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 3 1 FALSE (0.6666667 0.3333333)
## 2) RearEnd< 0.5 1 0 FALSE (1.0000000 0.0000000) *
## 3) RearEnd>=0.5 2 1 FALSE (0.5000000 0.5000000) *
fancyRpartPlot(mytree,caption=NULL)

train<-data.frame( ClaimID =1:7,
RearEnd=c(TRUE, TRUE, FALSE, FALSE, FALSE,FALSE,FALSE),
Whiplash=c(TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE),
Fraud =c(TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,FALSE))
train
## ClaimID RearEnd Whiplash Fraud
## 1 1 TRUE TRUE TRUE
## 2 2 TRUE TRUE TRUE
## 3 3 FALSE TRUE TRUE
## 4 4 FALSE TRUE FALSE
## 5 5 FALSE TRUE FALSE
## 6 6 FALSE FALSE FALSE
## 7 7 FALSE FALSE FALSE
mytree<-rpart(
Fraud~RearEnd+Whiplash,
data=train,
method="class",
maxdepth=1,
minsplit=2,
minbucket=1
)
mytree
## n= 7
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 7 3 FALSE (0.5714286 0.4285714)
## 2) RearEnd< 0.5 5 1 FALSE (0.8000000 0.2000000) *
## 3) RearEnd>=0.5 2 0 TRUE (0.0000000 1.0000000) *
fancyRpartPlot(mytree,caption=NULL)

lossmatrix<-matrix(c(0,1,3,0), byrow=TRUE, nrow=2)
lossmatrix
## [,1] [,2]
## [1,] 0 1
## [2,] 3 0
mytree<-rpart(
Fraud~RearEnd+Whiplash,
data=train,
method="class",
maxdepth=1,
minsplit=2,
minbucket=1,
parms=list(loss=lossmatrix)
)
mytree
## n= 7
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 7 4 TRUE (0.5714286 0.4285714)
## 2) Whiplash< 0.5 2 0 FALSE (1.0000000 0.0000000) *
## 3) Whiplash>=0.5 5 2 TRUE (0.4000000 0.6000000) *
fancyRpartPlot(mytree,caption=NULL)

train<-data.frame( ClaimID =c(1,2,3,4,5),
Activity=factor(x=c("active","very active","very active","inactive","very inactive"),
levels=c("very inactive","inactive","active","very active"), order=TRUE),
Fraud =c(FALSE,TRUE,TRUE,FALSE,TRUE))
train
## ClaimID Activity Fraud
## 1 1 active FALSE
## 2 2 very active TRUE
## 3 3 very active TRUE
## 4 4 inactive FALSE
## 5 5 very inactive TRUE
mytree<-rpart(
Fraud~Activity,
data=train,
method="class",
minsplit=2,
minbucket=1,
)
mytree
## n= 5
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 5 2 TRUE (0.4000000 0.6000000)
## 2) Activity=very inactive,inactive,active 3 1 FALSE (0.6666667 0.3333333)
## 4) Activity=inactive,active,very active 2 0 FALSE (1.0000000 0.0000000) *
## 5) Activity=very inactive 1 0 TRUE (0.0000000 1.0000000) *
## 3) Activity=very active 2 0 TRUE (0.0000000 1.0000000) *
fancyRpartPlot(mytree,caption=NULL)

train<-data.frame( ClaimID =1:10,
RearEnd=c(TRUE, TRUE, TRUE,FALSE, FALSE, FALSE,FALSE,TRUE,TRUE,FALSE),
Whiplash=c(TRUE,TRUE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,TRUE),
Activity=factor(x=c("active","very active","very active","inactive","very inactive","inactive","very inactive","active","active","very active"),
levels=c("very inactive","inactive","active","very active"), order=TRUE),
Fraud =c(FALSE,TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE,FALSE,TRUE))
train
## ClaimID RearEnd Whiplash Activity Fraud
## 1 1 TRUE TRUE active FALSE
## 2 2 TRUE TRUE very active TRUE
## 3 3 TRUE TRUE very active TRUE
## 4 4 FALSE TRUE inactive FALSE
## 5 5 FALSE TRUE very inactive FALSE
## 6 6 FALSE FALSE inactive TRUE
## 7 7 FALSE FALSE very inactive TRUE
## 8 8 TRUE FALSE active FALSE
## 9 9 TRUE FALSE active FALSE
## 10 10 FALSE TRUE very active TRUE
mytree<-rpart(
Fraud~RearEnd+Whiplash+Activity,
data=train,
method="class",
minsplit=2,
minbucket=1,
cp=-1
)
mytree
## n= 10
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 10 5 FALSE (0.5000000 0.5000000)
## 2) Activity=very inactive,inactive,active 7 2 FALSE (0.7142857 0.2857143)
## 4) RearEnd>=0.5 3 0 FALSE (1.0000000 0.0000000) *
## 5) RearEnd< 0.5 4 2 FALSE (0.5000000 0.5000000)
## 10) Whiplash>=0.5 2 0 FALSE (1.0000000 0.0000000) *
## 11) Whiplash< 0.5 2 0 TRUE (0.0000000 1.0000000) *
## 3) Activity=very active 3 0 TRUE (0.0000000 1.0000000) *
fancyRpartPlot(mytree,caption=NULL)

names(mytree)
## [1] "frame" "where" "call"
## [4] "terms" "cptable" "method"
## [7] "parms" "control" "functions"
## [10] "numresp" "splits" "csplit"
## [13] "variable.importance" "y" "ordered"
mytree$variable.importance
## Activity Whiplash RearEnd
## 3.0000000 2.0000000 0.8571429
mytree$method
## [1] "class"
print(mytree$method)
## [1] "class"
print(mytree$finalModel)
## NULL
printcp(mytree)
##
## Classification tree:
## rpart(formula = Fraud ~ RearEnd + Whiplash + Activity, data = train,
## method = "class", minsplit = 2, minbucket = 1, cp = -1)
##
## Variables actually used in tree construction:
## [1] Activity RearEnd Whiplash
##
## Root node error: 5/10 = 0.5
##
## n= 10
##
## CP nsplit rel error xerror xstd
## 1 0.6 0 1.0 2.0 0.00000
## 2 0.2 1 0.4 0.4 0.25298
## 3 -1.0 3 0.0 0.4 0.25298
mytree<-prune(mytree,cp=0.21)
fancyRpartPlot(mytree)
