train <-  data.frame( ClaimID = c(1,2,3),
RearEnd = c(TRUE, FALSE, TRUE), 
FRAUD = c(TRUE, FALSE, TRUE))
train
##   ClaimID RearEnd FRAUD
## 1       1    TRUE  TRUE
## 2       2   FALSE FALSE
## 3       3    TRUE  TRUE
library(rpart)
## Warning: package 'rpart' was built under R version 4.3.3
mytree <- rpart(FRAUD~RearEnd, data = train, method= "class")

mytree <- rpart(FRAUD~RearEnd, data = train, method = "class", minsplit=2, minbucket=1)
mytree
## n= 3 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
## 1) root 3 1 TRUE (0.3333333 0.6666667)  
##   2) RearEnd< 0.5 1 0 FALSE (1.0000000 0.0000000) *
##   3) RearEnd>=0.5 2 0 TRUE (0.0000000 1.0000000) *
library(rattle)
## Warning: package 'rattle' was built under R version 4.3.3
## Loading required package: tibble
## Warning: package 'tibble' was built under R version 4.3.3
## Loading required package: bitops
## Rattle: A free graphical interface for data science with R.
## Version 5.5.1 Copyright (c) 2006-2021 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.3.3
library(RColorBrewer)
#plot mytree
fancyRpartPlot(mytree, caption=NULL)

mytree <- rpart( FRAUD~RearEnd, data=train, method = "class", parms = list(split='information'), minsplit=2, minbucket=1)
mytree
## n= 3 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
## 1) root 3 1 TRUE (0.3333333 0.6666667)  
##   2) RearEnd< 0.5 1 0 FALSE (1.0000000 0.0000000) *
##   3) RearEnd>=0.5 2 0 TRUE (0.0000000 1.0000000) *
fancyRpartPlot(mytree, caption = NULL)

train <-  data.frame( ClaimID = c(1,2,3),
RearEnd = c(TRUE, FALSE, TRUE), 
FRAUD = c(TRUE, FALSE, FALSE))
train
##   ClaimID RearEnd FRAUD
## 1       1    TRUE  TRUE
## 2       2   FALSE FALSE
## 3       3    TRUE FALSE
mytree <- rpart( FRAUD~RearEnd, data=train, method = "class", parms = list(split='information'), minsplit=2, minbucket=1)
mytree
## n= 3 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
## 1) root 3 1 FALSE (0.6666667 0.3333333) *
mytree <- rpart(FRAUD~RearEnd, data = train, method = "class", minsplit=2, minbucket=1, cp = -1)
fancyRpartPlot(mytree, caption= NULL)

train <- data.frame(
  ClaimID = 1:7, 
  RearEnd = c(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE),
  Whiplash = c(TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE),
  FRAUD = c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE)
)
 train 
##   ClaimID RearEnd Whiplash FRAUD
## 1       1    TRUE     TRUE  TRUE
## 2       2    TRUE     TRUE  TRUE
## 3       3   FALSE     TRUE  TRUE
## 4       4   FALSE     TRUE FALSE
## 5       5   FALSE     TRUE FALSE
## 6       6   FALSE    FALSE FALSE
## 7       7   FALSE    FALSE FALSE
 mytree <- rpart(
   FRAUD~RearEnd+Whiplash, data = train, method = "class", maxdepth=1, minsplit=2, minbucket=1
 )
 fancyRpartPlot(mytree, caption = NULL)

lossmatrix <- matrix(c(0,1,3,0), byrow = TRUE, nrow = 2)
lossmatrix
##      [,1] [,2]
## [1,]    0    1
## [2,]    3    0
mytree<- rpart(
  FRAUD~RearEnd+Whiplash, data=train, method = "class", maxdepth=1, minsplit=2, minbucket= 1, parms=list(loss= lossmatrix)
)
mytree
## n= 7 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
## 1) root 7 4 TRUE (0.5714286 0.4285714)  
##   2) Whiplash< 0.5 2 0 FALSE (1.0000000 0.0000000) *
##   3) Whiplash>=0.5 5 2 TRUE (0.4000000 0.6000000) *
fancyRpartPlot(mytree, caption = NULL)

train <- data.frame(
  ClaimID = c(1,2,3,4,5),
  Activity = factor(x = c("active", "very active", " very active", "inactive", "very inactive"), levels = c("very inactive","inactive", "active", "very active"), order=TRUE), 
  FRAUD= c(FALSE, TRUE, TRUE, FALSE, TRUE)
)
train
##   ClaimID      Activity FRAUD
## 1       1        active FALSE
## 2       2   very active  TRUE
## 3       3          <NA>  TRUE
## 4       4      inactive FALSE
## 5       5 very inactive  TRUE
mytree<- rpart(FRAUD~Activity, data=train, method = "class", minsplit=2, minbucket=1)
fancyRpartPlot(mytree, caption = NULL)

train <- data.frame(
  ClaimID= 1:10,
  RearEnd = c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE),
  Whiplash = c(TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE),
  Activity = factor(x = c("active", "very active", "very active", "inactive", "very inactive", " inactive", " very inactive", "active", "active", "very active"),
levels = c("very inactive", "inactive", "active", "very active"), 
ordered= TRUE), 
FRAUD= c(FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE)
)
train
##    ClaimID RearEnd Whiplash      Activity FRAUD
## 1        1    TRUE     TRUE        active FALSE
## 2        2    TRUE     TRUE   very active  TRUE
## 3        3    TRUE     TRUE   very active  TRUE
## 4        4   FALSE     TRUE      inactive FALSE
## 5        5   FALSE     TRUE very inactive FALSE
## 6        6   FALSE    FALSE          <NA>  TRUE
## 7        7   FALSE    FALSE          <NA>  TRUE
## 8        8    TRUE    FALSE        active FALSE
## 9        9    TRUE    FALSE        active FALSE
## 10      10   FALSE     TRUE   very active  TRUE
#Grow a full tree
mytree <- rpart(
FRAUD ~ RearEnd + Whiplash + Activity, data= train, method = "class", minsplit=2, minbucket=1, cp= -1
)
fancyRpartPlot(mytree, caption = NULL)

mytree$variable.importance
##  Activity  Whiplash   RearEnd 
## 4.0357143 2.0000000 0.8571429
names(mytree)
##  [1] "frame"               "where"               "call"               
##  [4] "terms"               "cptable"             "method"             
##  [7] "parms"               "control"             "functions"          
## [10] "numresp"             "splits"              "csplit"             
## [13] "variable.importance" "y"                   "ordered"
printcp(mytree)
## 
## Classification tree:
## rpart(formula = FRAUD ~ RearEnd + Whiplash + Activity, data = train, 
##     method = "class", minsplit = 2, minbucket = 1, cp = -1)
## 
## Variables actually used in tree construction:
## [1] Activity RearEnd  Whiplash
## 
## Root node error: 5/10 = 0.5
## 
## n= 10 
## 
##     CP nsplit rel error xerror    xstd
## 1  0.6      0       1.0    2.0 0.00000
## 2  0.2      1       0.4    0.4 0.25298
## 3 -1.0      3       0.0    0.4 0.25298
mytree <- prune(mytree, cp =0.21)
fancyRpartPlot(mytree)

R Markdown

Including Plots