This is my Assignment 3 RMD file! Name: Lyndsay Cuff
#load in libraries
library(terra)
## terra 1.7.71
library(tidyterra)
##
## Attaching package: 'tidyterra'
## The following object is masked from 'package:stats':
##
## filter
library(sp)
library(ggplot2)
library(ggthemes)
library(urbnmapr)
library(sf)
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
library(leaflet)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:terra':
##
## intersect, union
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(spData)
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
library(tidyr)
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:terra':
##
## extract
#load in the data first and foremost
setwd("/Users/lyndsaycuff/DIDA 370")
foster2014 <- read.csv("countyfoster2014.csv")
setwd("/Users/lyndsaycuff/DIDA 370/NE1_50M_SR_W")
rastuh <- rast("NE1_50M_SR_W.tif")
rastuh <- terra::project(rastuh, "EPSG:4326", method = "bilinear")
##
|---------|---------|---------|---------|
=========================================
#grab states shape files for our map
states <- get_urbn_map("states", sf = TRUE)
#change projection while we're at it
states <- states %>% st_transform("EPSG:4326")
## old-style crs object detected; please recreate object with a recent sf::st_crs()
#load in some more data...I am not waiting all that time AGAIN
setwd("/Users/lyndsaycuff/DIDA 370")
foster2014 <- read.csv("nycountyfoster2014.csv")
#lets standardize the data and make some RATES
foster2014 <- foster2014 %>% mutate(percent_foster = round((Foster.Family.Homes/Children.in.Care)*100, 2),
percent_institution = round((Institutions/Children.in.Care)*100, 2),
percent_grouphome = round((Group.Homes/Children.in.Care)*100, 2))
#lets make the raster map
#first have to crop the raster so that it is the same size as the entire US
#should be able to do this with one line SINCE they are projected the same way
cropped_raster <- crop(rastuh, states)
#now lets plot it all together
ggplot()+
geom_spatraster(data = cropped_raster)+
geom_sf(states, mapping = aes(), fill = "transparent", color = "black")+
theme_map()+
scale_fill_whitebox_c(
palette = "atlas",
na.value = "white")+
labs(title = "Landcover Across US States",
fill = "Landcover")+
theme(plot.title = element_text(hjust = 0.5, size = 16),
legend.position="right")
## <SpatRaster> resampled to 500636 cells for plotting
## ! `tidyterra::geom_spatraster()`: Plotting 3 overlapping layers: NE1_50M_SR_W_1, NE1_50M_SR_W_2, and NE1_50M_SR_W_3. Either:
##
## Use `facet_wrap(~lyr)` for faceting or
##
## Use `aes(fill = <name_of_layer>)` for displaying single layers
#I am gonna make the other map
#grab counties BASE MAP
counties <- get_urbn_map("counties", sf = TRUE)
#filter the data to get just NYS
nycounties <- counties %>%
filter(state_abbv == "NY") %>%
st_transform("EPSG:4326")
## old-style crs object detected; please recreate object with a recent sf::st_crs()
#MERGE BABY MERGE
#remove the unnecessary words first... we get it you're a county
nycounties <- nycounties %>%
separate(county_name, c("county_name", "county"), sep = " County") %>%
select(-county)
#Now merge it!!
full_data2014 <- nycounties %>%
left_join(foster2014, by = c("county_name" = "Social.Service.District"))
#lets make a plot tho
#start with the basics
#start with a popup
#I used this reddit forum to figure out how to put the popup label on two separate lines (using the <br>)
#https://www.reddit.com/r/Rlanguage/comments/6bsji1/add_line_break_to_leaflet_pop_up/
popupfoster <- paste0("<strong>Community: </strong>", full_data2014$county_name, "<br>", "<strong>Percentage of Children in Foster Family Homes: </strong>", full_data2014$percent_foster)
popupgrouphomes <- paste0("<strong>Community: </strong>", full_data2014$county_name, "<br>", "<strong>Percentage of Children in Group Homes: </strong>", full_data2014$percent_grouphome)
#and then a palette
palettefoster <- colorBin("Purples", full_data2014$percent_foster, bins = 5, pretty = FALSE, na.color = "black")
palettegrouphome <- colorBin("Blues", full_data2014$percent_grouphome, bins = 5, pretty = FALSE, na.color = "black")
#I guess we plot now
leaflet() %>%
leaflet::addPolygons(data = full_data2014,
stroke = FALSE,
fillColor = ~palettefoster(full_data2014$percent_foster),
fillOpacity = 1,
smoothFactor = 0.5,
popup = popupfoster,
group = "Foster Homes") %>%
leaflet::addPolygons(data = full_data2014,
stroke = FALSE,
fillColor = ~palettegrouphome(full_data2014$percent_grouphome),
fillOpacity = 1,
smoothFactor = 0.5,
popup = popupgrouphomes,
group = "Group Homes") %>%
addLegend("bottomright",
pal=palettefoster,
values=full_data2014$percent_foster,
title = "Percentage of Children in Foster Care",
group = 'Foster Homes') %>%
addLegend("bottomleft",
pal = palettegrouphome,
values=full_data2014$percent_grouphome,
title = "Percentage of Children in Group Homes",
group = "Group Homes") %>%
addProviderTiles(providers$OpenStreetMap) %>%
addLayersControl(overlayGroups = c("Foster Homes", "Group Homes"),
options = layersControlOptions(collapsed = FALSE))