5 Condition Report

Power analyses based on below results

How powered are we to detect our tightness effect?

## 
##      Balanced one-way analysis of variance power calculation 
## 
##               k = 5
##               n = 19
##               f = 0.37
##       sig.level = 0.05
##           power = 0.81
## 
## NOTE: n is number in each group

How powered are we to detect our sense of power effect?

## 
##      Balanced one-way analysis of variance power calculation 
## 
##               k = 5
##               n = 19
##               f = 0.23
##       sig.level = 0.05
##           power = 0.38
## 
## NOTE: n is number in each group

How powered are we to detect our “block” effect?

## 
##      Balanced one-way analysis of variance power calculation 
## 
##               k = 5
##               n = 19
##               f = 0.2
##       sig.level = 0.05
##           power = 0.3
## 
## NOTE: n is number in each group

Stimuli check

I compared these responses to the midpoint (4)

Did participants find the posts offensive?

t.test(mu = 4, exp1_5condclean$check_1)
## 
##  One Sample t-test
## 
## data:  exp1_5condclean$check_1
## t = 7, df = 169, p-value = 0.00000000004
## alternative hypothesis: true mean is not equal to 4
## 95 percent confidence interval:
##  4.7 5.2
## sample estimates:
## mean of x 
##       4.9

Did participants find the posts a violation of Webster Springs’ rules?

t.test(mu = 4, exp1_5condclean$check_3)
## 
##  One Sample t-test
## 
## data:  exp1_5condclean$check_3
## t = 17, df = 169, p-value <0.0000000000000002
## alternative hypothesis: true mean is not equal to 4
## 95 percent confidence interval:
##  5.6 6.0
## sample estimates:
## mean of x 
##       5.8

All 5 conditions

## Some items ( looseness_4 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option

Main effects and scale information

Post hoc tests

## $Tightness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5condclean)
## 
## $cond_label
##                         diff    lwr  upr p adj
## 2.RelD-In-1.HighD      0.858  0.288 1.43  0.00
## 3.RelD-Out-1.HighD     0.672  0.067 1.28  0.02
## 4.LowD-In-1.HighD      0.772  0.022 1.52  0.04
## 5.LowD-Out-1.HighD     0.931  0.206 1.66  0.00
## 3.RelD-Out-2.RelD-In  -0.186 -0.780 0.41  0.91
## 4.LowD-In-2.RelD-In   -0.086 -0.827 0.65  1.00
## 5.LowD-Out-2.RelD-In   0.073 -0.642 0.79  1.00
## 4.LowD-In-3.RelD-Out   0.100 -0.668 0.87  1.00
## 5.LowD-Out-3.RelD-Out  0.259 -0.484 1.00  0.87
## 5.LowD-Out-4.LowD-In   0.159 -0.706 1.02  0.99
## 
## 
## $Status
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5condclean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.010 -0.75 0.77  1.00
## 3.RelD-Out-1.HighD     0.175 -0.63 0.98  0.97
## 4.LowD-In-1.HighD      0.081 -0.91 1.08  1.00
## 5.LowD-Out-1.HighD    -0.068 -1.03 0.89  1.00
## 3.RelD-Out-2.RelD-In   0.165 -0.62 0.95  0.98
## 4.LowD-In-2.RelD-In    0.070 -0.91 1.05  1.00
## 5.LowD-Out-2.RelD-In  -0.078 -1.03 0.87  1.00
## 4.LowD-In-3.RelD-Out  -0.095 -1.11 0.92  1.00
## 5.LowD-Out-3.RelD-Out -0.243 -1.23 0.74  0.96
## 5.LowD-Out-4.LowD-In  -0.148 -1.30 1.00  1.00
## 
## 
## $Domin.
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5condclean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.188 -0.57 0.95  0.96
## 3.RelD-Out-1.HighD     0.139 -0.67 0.95  0.99
## 4.LowD-In-1.HighD     -0.124 -1.13 0.88  1.00
## 5.LowD-Out-1.HighD     0.476 -0.49 1.44  0.66
## 3.RelD-Out-2.RelD-In  -0.049 -0.84 0.74  1.00
## 4.LowD-In-2.RelD-In   -0.312 -1.30 0.68  0.91
## 5.LowD-Out-2.RelD-In   0.288 -0.67 1.24  0.92
## 4.LowD-In-3.RelD-Out  -0.263 -1.29 0.76  0.95
## 5.LowD-Out-3.RelD-Out  0.337 -0.66 1.33  0.88
## 5.LowD-Out-4.LowD-In   0.600 -0.56 1.76  0.61
## 
## 
## $Monitor
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5condclean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.528 -0.36 1.42  0.47
## 3.RelD-Out-1.HighD     0.157 -0.78 1.10  0.99
## 4.LowD-In-1.HighD      0.394 -0.77 1.56  0.88
## 5.LowD-Out-1.HighD     0.603 -0.52 1.73  0.58
## 3.RelD-Out-2.RelD-In  -0.372 -1.29 0.55  0.80
## 4.LowD-In-2.RelD-In   -0.135 -1.29 1.02  1.00
## 5.LowD-Out-2.RelD-In   0.074 -1.04 1.19  1.00
## 4.LowD-In-3.RelD-Out   0.237 -0.96 1.43  0.98
## 5.LowD-Out-3.RelD-Out  0.446 -0.71 1.60  0.82
## 5.LowD-Out-4.LowD-In   0.209 -1.14 1.55  0.99
## 
## 
## $SOP
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5condclean)
## 
## $cond_label
##                         diff   lwr    upr p adj
## 2.RelD-In-1.HighD     -0.155 -0.85  0.539  0.97
## 3.RelD-Out-1.HighD     0.183 -0.55  0.920  0.96
## 4.LowD-In-1.HighD     -0.828 -1.74  0.085  0.10
## 5.LowD-Out-1.HighD    -0.141 -1.02  0.741  0.99
## 3.RelD-Out-2.RelD-In   0.339 -0.38  1.061  0.70
## 4.LowD-In-2.RelD-In   -0.673 -1.57  0.228  0.24
## 5.LowD-Out-2.RelD-In   0.014 -0.86  0.884  1.00
## 4.LowD-In-3.RelD-Out  -1.011 -1.95 -0.077  0.03
## 5.LowD-Out-3.RelD-Out -0.324 -1.23  0.580  0.86
## 5.LowD-Out-4.LowD-In   0.687 -0.37  1.740  0.38
## 
## 
## $Moraliz.
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5condclean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD     -0.027 -0.85 0.79  1.00
## 3.RelD-Out-1.HighD     0.108 -0.76 0.98  1.00
## 4.LowD-In-1.HighD      0.325 -0.76 1.41  0.92
## 5.LowD-Out-1.HighD     0.209 -0.84 1.25  0.98
## 3.RelD-Out-2.RelD-In   0.135 -0.72 0.99  0.99
## 4.LowD-In-2.RelD-In    0.353 -0.72 1.42  0.89
## 5.LowD-Out-2.RelD-In   0.237 -0.79 1.27  0.97
## 4.LowD-In-3.RelD-Out   0.217 -0.89 1.32  0.98
## 5.LowD-Out-3.RelD-Out  0.101 -0.97 1.17  1.00
## 5.LowD-Out-4.LowD-In  -0.116 -1.36 1.13  1.00
## 
## 
## $Affil.
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5condclean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD     -0.254 -0.98 0.47  0.87
## 3.RelD-Out-1.HighD     0.218 -0.55 0.99  0.94
## 4.LowD-In-1.HighD      0.086 -0.87 1.04  1.00
## 5.LowD-Out-1.HighD     0.050 -0.87 0.97  1.00
## 3.RelD-Out-2.RelD-In   0.471 -0.28 1.23  0.42
## 4.LowD-In-2.RelD-In    0.340 -0.60 1.28  0.86
## 5.LowD-Out-2.RelD-In   0.304 -0.60 1.21  0.89
## 4.LowD-In-3.RelD-Out  -0.132 -1.11 0.84  1.00
## 5.LowD-Out-3.RelD-Out -0.168 -1.11 0.78  0.99
## 5.LowD-Out-4.LowD-In  -0.036 -1.14 1.06  1.00
## 
## 
## $`Rep. Police`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5condclean)
## 
## $cond_label
##                         diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.083 -0.18 0.35  0.91
## 3.RelD-Out-1.HighD     0.013 -0.27 0.29  1.00
## 4.LowD-In-1.HighD     -0.039 -0.39 0.31  1.00
## 5.LowD-Out-1.HighD     0.179 -0.16 0.51  0.58
## 3.RelD-Out-2.RelD-In  -0.070 -0.34 0.20  0.95
## 4.LowD-In-2.RelD-In   -0.123 -0.47 0.22  0.86
## 5.LowD-Out-2.RelD-In   0.095 -0.24 0.43  0.93
## 4.LowD-In-3.RelD-Out  -0.053 -0.41 0.30  0.99
## 5.LowD-Out-3.RelD-Out  0.165 -0.18 0.51  0.67
## 5.LowD-Out-4.LowD-In   0.218 -0.18 0.62  0.56
## 
## 
## $`Rep. Admin`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5condclean)
## 
## $cond_label
##                          diff   lwr  upr p adj
## 2.RelD-In-1.HighD      0.0985 -0.11 0.31  0.69
## 3.RelD-Out-1.HighD     0.0239 -0.20 0.25  1.00
## 4.LowD-In-1.HighD     -0.0287 -0.30 0.25  1.00
## 5.LowD-Out-1.HighD    -0.0087 -0.27 0.26  1.00
## 3.RelD-Out-2.RelD-In  -0.0746 -0.29 0.14  0.88
## 4.LowD-In-2.RelD-In   -0.1272 -0.40 0.14  0.69
## 5.LowD-Out-2.RelD-In  -0.1071 -0.37 0.15  0.79
## 4.LowD-In-3.RelD-Out  -0.0526 -0.33 0.23  0.99
## 5.LowD-Out-3.RelD-Out -0.0326 -0.30 0.24  1.00
## 5.LowD-Out-4.LowD-In   0.0201 -0.30 0.34  1.00
## 
## 
## $Block
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_label, data = exp1_5condclean)
## 
## $cond_label
##                         diff    lwr  upr p adj
## 2.RelD-In-1.HighD      0.172 -0.062 0.41  0.26
## 3.RelD-Out-1.HighD     0.081 -0.167 0.33  0.90
## 4.LowD-In-1.HighD      0.108 -0.201 0.42  0.87
## 5.LowD-Out-1.HighD     0.223 -0.075 0.52  0.24
## 3.RelD-Out-2.RelD-In  -0.091 -0.335 0.15  0.84
## 4.LowD-In-2.RelD-In   -0.065 -0.369 0.24  0.98
## 5.LowD-Out-2.RelD-In   0.051 -0.243 0.34  0.99
## 4.LowD-In-3.RelD-Out   0.026 -0.289 0.34  1.00
## 5.LowD-Out-3.RelD-Out  0.142 -0.164 0.45  0.70
## 5.LowD-Out-4.LowD-In   0.115 -0.240 0.47  0.90

Logistic regression

Police

## 
## Call:
## glm(formula = report_police ~ cond, family = "binomial", data = exp1_5condclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   -1.099      0.348   -3.16   0.0016 **
## condlow_in    -0.223      0.662   -0.34   0.7360   
## condlow_out    0.811      0.562    1.44   0.1489   
## condrel_in     0.406      0.464    0.87   0.3818   
## condrel_out    0.069      0.507    0.14   0.8917   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 205.97  on 169  degrees of freedom
## Residual deviance: 202.63  on 165  degrees of freedom
## AIC: 212.6
## 
## Number of Fisher Scoring iterations: 4
## (Intercept)  condlow_in condlow_out  condrel_in condrel_out 
##        0.33        0.80        2.25        1.50        1.07

Admin

## 
## Call:
## glm(formula = report_admin ~ cond, family = "binomial", data = exp1_5condclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   1.5041     0.3909    3.85  0.00012 ***
## condlow_in   -0.1823     0.6852   -0.27  0.79016    
## condlow_out  -0.0572     0.6794   -0.08  0.93295    
## condrel_in    0.8938     0.6523    1.37  0.17061    
## condrel_out   0.1699     0.5922    0.29  0.77419    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 145.44  on 169  degrees of freedom
## Residual deviance: 142.42  on 165  degrees of freedom
## AIC: 152.4
## 
## Number of Fisher Scoring iterations: 5
## (Intercept)  condlow_in condlow_out  condrel_in condrel_out 
##        4.50        0.83        0.94        2.44        1.19

Block

## 
## Call:
## glm(formula = block ~ cond, family = "binomial", data = exp1_5condclean)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    0.762      0.324    2.35    0.019 *
## condlow_in     0.560      0.649    0.86    0.389  
## condlow_out    1.489      0.811    1.84    0.066 .
## condrel_in     1.006      0.522    1.93    0.054 .
## condrel_out    0.408      0.500    0.82    0.415  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.54  on 169  degrees of freedom
## Residual deviance: 169.29  on 165  degrees of freedom
## AIC: 179.3
## 
## Number of Fisher Scoring iterations: 4
## (Intercept)  condlow_in condlow_out  condrel_in condrel_out 
##         2.1         1.7         4.4         2.7         1.5

Graphs

Full scale measures

Single Item measures

Controls

Full list

## $Tightness
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7736 -0.6267  0.0637  0.5595  2.2550 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               4.96899    1.13039    4.40 0.000021 ***
## cond_label2.RelD-In       0.88139    0.21939    4.02 0.000094 ***
## cond_label3.RelD-Out      0.63117    0.23164    2.72   0.0072 ** 
## cond_label4.LowD-In       0.80570    0.29040    2.77   0.0063 ** 
## cond_label5.LowD-Out      0.92031    0.28736    3.20   0.0017 ** 
## gender                   -0.23715    0.14597   -1.62   0.1064    
## Age                      -0.00946    0.00661   -1.43   0.1548    
## Race1,2                  -0.07765    0.73307   -0.11   0.9158    
## Race1,3                   0.53938    0.59632    0.90   0.3672    
## Race1,5                  -0.38984    0.74189   -0.53   0.6001    
## Race1,7                   0.13786    0.73030    0.19   0.8505    
## Race2                    -0.08877    0.28777   -0.31   0.7582    
## Race3                     0.12948    0.36691    0.35   0.7247    
## morality"Achievement"    -1.09158    1.05054   -1.04   0.3005    
## morality"Benevolence"    -1.35804    1.03246   -1.32   0.1905    
## morality"Conformity"     -1.09041    1.15427   -0.94   0.3464    
## morality"Hedonism"       -2.28952    1.26917   -1.80   0.0733 .  
## morality"Power"          -0.43717    1.24801   -0.35   0.7266    
## morality"Security"       -1.34492    1.02500   -1.31   0.1916    
## morality"Self-direction" -1.44916    1.03187   -1.40   0.1623    
## morality"Stimulation"    -0.81530    1.10102   -0.74   0.4602    
## morality"Tradition"      -0.93262    1.06175   -0.88   0.3812    
## morality"Universalism"   -1.19210    1.05083   -1.13   0.2585    
## check_1                   0.02412    0.05814    0.41   0.6788    
## check_3                   0.08828    0.07002    1.26   0.2094    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.99 on 145 degrees of freedom
## Multiple R-squared:  0.225,  Adjusted R-squared:  0.0971 
## F-statistic: 1.76 on 24 and 145 DF,  p-value: 0.0229
## 
## 
## $Status
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.682 -0.771 -0.105  0.389  3.175 
## 
## Coefficients:
##                          Estimate Std. Error t value    Pr(>|t|)    
## (Intercept)               7.85706    1.36939    5.74 0.000000054 ***
## cond_label2.RelD-In       0.24188    0.26577    0.91      0.3643    
## cond_label3.RelD-Out      0.30621    0.28061    1.09      0.2770    
## cond_label4.LowD-In       0.36396    0.35180    1.03      0.3026    
## cond_label5.LowD-Out     -0.22289    0.34812   -0.64      0.5230    
## gender                   -0.02424    0.17683   -0.14      0.8912    
## Age                       0.00154    0.00801    0.19      0.8476    
## Race1,2                  -1.21781    0.88807   -1.37      0.1724    
## Race1,3                  -1.09110    0.72240   -1.51      0.1331    
## Race1,5                   0.64467    0.89875    0.72      0.4743    
## Race1,7                  -0.74282    0.88471   -0.84      0.4025    
## Race2                     0.71312    0.34861    2.05      0.0426 *  
## Race3                    -0.21004    0.44449   -0.47      0.6373    
## morality"Achievement"    -3.37291    1.27266   -2.65      0.0089 ** 
## morality"Benevolence"    -4.06633    1.25076   -3.25      0.0014 ** 
## morality"Conformity"     -3.24637    1.39832   -2.32      0.0216 *  
## morality"Hedonism"       -4.11676    1.53752   -2.68      0.0083 ** 
## morality"Power"          -2.84489    1.51188   -1.88      0.0619 .  
## morality"Security"       -3.67479    1.24171   -2.96      0.0036 ** 
## morality"Self-direction" -3.84314    1.25004   -3.07      0.0025 ** 
## morality"Stimulation"    -4.13571    1.33382   -3.10      0.0023 ** 
## morality"Tradition"      -3.49405    1.28624   -2.72      0.0074 ** 
## morality"Universalism"   -3.93602    1.27301   -3.09      0.0024 ** 
## check_1                   0.00486    0.07043    0.07      0.9451    
## check_3                  -0.34716    0.08483   -4.09 0.000070532 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 145 degrees of freedom
## Multiple R-squared:  0.269,  Adjusted R-squared:  0.148 
## F-statistic: 2.23 on 24 and 145 DF,  p-value: 0.00202
## 
## 
## $Domin.
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.967 -0.831 -0.016  0.821  3.686 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.76545    1.42354    4.05 0.000083 ***
## cond_label2.RelD-In       0.17288    0.27628    0.63  0.53246    
## cond_label3.RelD-Out      0.17623    0.29171    0.60  0.54670    
## cond_label4.LowD-In      -0.08298    0.36572   -0.23  0.82081    
## cond_label5.LowD-Out      0.36724    0.36189    1.01  0.31190    
## gender                   -0.05202    0.18382   -0.28  0.77759    
## Age                      -0.00412    0.00833   -0.50  0.62113    
## Race1,2                  -1.81646    0.92318   -1.97  0.05102 .  
## Race1,3                  -0.41280    0.75097   -0.55  0.58338    
## Race1,5                  -1.40706    0.93429   -1.51  0.13424    
## Race1,7                  -0.40607    0.91970   -0.44  0.65949    
## Race2                    -0.27645    0.36239   -0.76  0.44679    
## Race3                    -0.66042    0.46206   -1.43  0.15507    
## morality"Achievement"    -3.13428    1.32299   -2.37  0.01915 *  
## morality"Benevolence"    -3.45176    1.30022   -2.65  0.00882 ** 
## morality"Conformity"     -3.14997    1.45361   -2.17  0.03187 *  
## morality"Hedonism"       -3.73846    1.59832   -2.34  0.02070 *  
## morality"Power"          -2.24041    1.57167   -1.43  0.15616    
## morality"Security"       -3.50078    1.29082   -2.71  0.00750 ** 
## morality"Self-direction" -3.57719    1.29947   -2.75  0.00666 ** 
## morality"Stimulation"    -3.50327    1.38656   -2.53  0.01259 *  
## morality"Tradition"      -3.11821    1.33710   -2.33  0.02107 *  
## morality"Universalism"   -3.19898    1.32335   -2.42  0.01688 *  
## check_1                   0.25779    0.07322    3.52  0.00058 ***
## check_3                  -0.07737    0.08818   -0.88  0.38171    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 145 degrees of freedom
## Multiple R-squared:  0.231,  Adjusted R-squared:  0.104 
## F-statistic: 1.81 on 24 and 145 DF,  p-value: 0.0173
## 
## 
## $Monitor
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1415 -0.9501  0.0872  1.1032  2.9304 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               5.27381    1.71537    3.07   0.0025 **
## cond_label2.RelD-In       0.40718    0.33292    1.22   0.2233   
## cond_label3.RelD-Out      0.01108    0.35151    0.03   0.9749   
## cond_label4.LowD-In       0.32868    0.44069    0.75   0.4570   
## cond_label5.LowD-Out      0.67251    0.43608    1.54   0.1252   
## gender                   -0.00253    0.22151   -0.01   0.9909   
## Age                       0.00483    0.01003    0.48   0.6307   
## Race1,2                   1.14626    1.11244    1.03   0.3045   
## Race1,3                   0.50672    0.90492    0.56   0.5764   
## Race1,5                  -1.19988    1.12582   -1.07   0.2883   
## Race1,7                   2.41989    1.10824    2.18   0.0306 * 
## Race2                    -0.27852    0.43668   -0.64   0.5246   
## Race3                     0.86809    0.55679    1.56   0.1212   
## morality"Achievement"    -2.89954    1.59420   -1.82   0.0710 . 
## morality"Benevolence"    -3.02211    1.56676   -1.93   0.0557 . 
## morality"Conformity"     -3.30943    1.75160   -1.89   0.0608 . 
## morality"Hedonism"       -4.42805    1.92597   -2.30   0.0229 * 
## morality"Power"          -0.91294    1.89386   -0.48   0.6305   
## morality"Security"       -2.97776    1.55543   -1.91   0.0575 . 
## morality"Self-direction" -3.13285    1.56586   -2.00   0.0473 * 
## morality"Stimulation"    -2.61092    1.67081   -1.56   0.1203   
## morality"Tradition"      -3.09287    1.61121   -1.92   0.0569 . 
## morality"Universalism"   -3.54889    1.59464   -2.23   0.0276 * 
## check_1                   0.05230    0.08823    0.59   0.5542   
## check_3                   0.16752    0.10626    1.58   0.1171   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 145 degrees of freedom
## Multiple R-squared:  0.181,  Adjusted R-squared:  0.0458 
## F-statistic: 1.34 on 24 and 145 DF,  p-value: 0.15
## 
## 
## $SOP
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.539 -0.799  0.049  0.752  3.170 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               2.95391    1.40354    2.10   0.0371 * 
## cond_label2.RelD-In      -0.28023    0.27240   -1.03   0.3053   
## cond_label3.RelD-Out      0.23021    0.28761    0.80   0.4248   
## cond_label4.LowD-In      -0.95935    0.36058   -2.66   0.0087 **
## cond_label5.LowD-Out     -0.18980    0.35680   -0.53   0.5956   
## gender                    0.29924    0.18124    1.65   0.1009   
## Age                       0.00842    0.00821    1.03   0.3069   
## Race1,2                   0.03995    0.91021    0.04   0.9651   
## Race1,3                   0.83979    0.74042    1.13   0.2586   
## Race1,5                  -0.61862    0.92116   -0.67   0.5029   
## Race1,7                  -0.37801    0.90678   -0.42   0.6774   
## Race2                     0.21682    0.35730    0.61   0.5449   
## Race3                     0.11280    0.45557    0.25   0.8048   
## morality"Achievement"    -0.14251    1.30440   -0.11   0.9132   
## morality"Benevolence"     0.10951    1.28195    0.09   0.9320   
## morality"Conformity"      0.23216    1.43319    0.16   0.8715   
## morality"Hedonism"        1.11009    1.57586    0.70   0.4823   
## morality"Power"           0.34761    1.54959    0.22   0.8228   
## morality"Security"        0.22224    1.27268    0.17   0.8616   
## morality"Self-direction" -0.00198    1.28121    0.00   0.9988   
## morality"Stimulation"     0.02744    1.36708    0.02   0.9840   
## morality"Tradition"      -0.36834    1.31831   -0.28   0.7803   
## morality"Universalism"   -0.22548    1.30476   -0.17   0.8630   
## check_1                   0.09464    0.07219    1.31   0.1919   
## check_3                  -0.00410    0.08694   -0.05   0.9624   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 145 degrees of freedom
## Multiple R-squared:  0.133,  Adjusted R-squared:  -0.0109 
## F-statistic: 0.924 on 24 and 145 DF,  p-value: 0.569
## 
## 
## $Moraliz.
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.467 -0.647  0.089  0.872  2.667 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               5.00521    1.55425    3.22   0.0016 **
## cond_label2.RelD-In      -0.23813    0.30165   -0.79   0.4312   
## cond_label3.RelD-Out     -0.07901    0.31849   -0.25   0.8044   
## cond_label4.LowD-In      -0.00951    0.39929   -0.02   0.9810   
## cond_label5.LowD-Out     -0.07086    0.39512   -0.18   0.8579   
## gender                    0.01987    0.20070    0.10   0.9213   
## Age                      -0.00456    0.00909   -0.50   0.6167   
## Race1,2                   0.05368    1.00795    0.05   0.9576   
## Race1,3                   0.84333    0.81992    1.03   0.3054   
## Race1,5                  -2.51969    1.02007   -2.47   0.0147 * 
## Race1,7                   1.23341    1.00414    1.23   0.2213   
## Race2                    -0.14348    0.39567   -0.36   0.7174   
## Race3                     0.43469    0.50449    0.86   0.3903   
## morality"Achievement"    -1.91943    1.44446   -1.33   0.1860   
## morality"Benevolence"    -1.89961    1.41960   -1.34   0.1829   
## morality"Conformity"     -1.64089    1.58708   -1.03   0.3029   
## morality"Hedonism"       -0.79500    1.74507   -0.46   0.6494   
## morality"Power"          -1.93528    1.71598   -1.13   0.2613   
## morality"Security"       -2.28238    1.40933   -1.62   0.1075   
## morality"Self-direction" -2.05062    1.41878   -1.45   0.1505   
## morality"Stimulation"    -2.62423    1.51387   -1.73   0.0851 . 
## morality"Tradition"      -2.18179    1.45987   -1.49   0.1372   
## morality"Universalism"   -2.42747    1.44486   -1.68   0.0951 . 
## check_1                   0.17279    0.07994    2.16   0.0323 * 
## check_3                   0.14473    0.09628    1.50   0.1349   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.4 on 145 degrees of freedom
## Multiple R-squared:  0.205,  Adjusted R-squared:  0.0731 
## F-statistic: 1.55 on 24 and 145 DF,  p-value: 0.0594
## 
## 
## $Affil.
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -1.932 -0.703 -0.062  0.504  3.802 
## 
## Coefficients:
##                          Estimate Std. Error t value         Pr(>|t|)    
## (Intercept)               9.48740    1.18556    8.00 0.00000000000036 ***
## cond_label2.RelD-In      -0.06655    0.23009   -0.29          0.77282    
## cond_label3.RelD-Out      0.09086    0.24294    0.37          0.70895    
## cond_label4.LowD-In       0.43420    0.30458    1.43          0.15613    
## cond_label5.LowD-Out     -0.13808    0.30139   -0.46          0.64753    
## gender                   -0.20740    0.15309   -1.35          0.17761    
## Age                       0.01108    0.00693    1.60          0.11234    
## Race1,2                  -0.65716    0.76885   -0.85          0.39411    
## Race1,3                  -0.25402    0.62543   -0.41          0.68523    
## Race1,5                  -0.70001    0.77810   -0.90          0.36980    
## Race1,7                  -0.24863    0.76595   -0.32          0.74594    
## Race2                     0.19981    0.30181    0.66          0.50900    
## Race3                     0.26228    0.38482    0.68          0.49660    
## morality"Achievement"    -4.24775    1.10182   -3.86          0.00017 ***
## morality"Benevolence"    -5.07324    1.08285   -4.69 0.00000638327513 ***
## morality"Conformity"     -4.36159    1.21060   -3.60          0.00043 ***
## morality"Hedonism"       -6.17673    1.33111   -4.64 0.00000771369567 ***
## morality"Power"          -5.31826    1.30892   -4.06 0.00007903543568 ***
## morality"Security"       -5.32612    1.07502   -4.95 0.00000199494825 ***
## morality"Self-direction" -4.95341    1.08223   -4.58 0.00001005457409 ***
## morality"Stimulation"    -5.09005    1.15476   -4.41 0.00002019024551 ***
## morality"Tradition"      -4.55452    1.11357   -4.09 0.00007123865242 ***
## morality"Universalism"   -5.35680    1.10212   -4.86 0.00000300771234 ***
## check_1                  -0.22034    0.06098   -3.61          0.00042 ***
## check_3                  -0.17691    0.07344   -2.41          0.01725 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 145 degrees of freedom
## Multiple R-squared:  0.412,  Adjusted R-squared:  0.314 
## F-statistic: 4.23 on 24 and 145 DF,  p-value: 0.0000000246
## 
## 
## $`Rep. Police`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.665 -0.295 -0.126  0.350  0.893 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)  
## (Intercept)               0.36323    0.48825    0.74    0.458  
## cond_label2.RelD-In       0.08134    0.09476    0.86    0.392  
## cond_label3.RelD-Out      0.01396    0.10005    0.14    0.889  
## cond_label4.LowD-In      -0.11627    0.12543   -0.93    0.356  
## cond_label5.LowD-Out      0.18412    0.12412    1.48    0.140  
## gender                   -0.15296    0.06305   -2.43    0.016 *
## Age                       0.00295    0.00286    1.03    0.304  
## Race1,2                   0.49009    0.31664    1.55    0.124  
## Race1,3                  -0.01355    0.25757   -0.05    0.958  
## Race1,5                  -0.30359    0.32044   -0.95    0.345  
## Race1,7                   0.63289    0.31544    2.01    0.047 *
## Race2                     0.13842    0.12429    1.11    0.267  
## Race3                    -0.05672    0.15848   -0.36    0.721  
## morality"Achievement"    -0.37327    0.45376   -0.82    0.412  
## morality"Benevolence"    -0.51288    0.44595   -1.15    0.252  
## morality"Conformity"     -0.33210    0.49856   -0.67    0.506  
## morality"Hedonism"       -0.34509    0.54819   -0.63    0.530  
## morality"Power"          -0.33801    0.53906   -0.63    0.532  
## morality"Security"       -0.52479    0.44273   -1.19    0.238  
## morality"Self-direction" -0.56155    0.44569   -1.26    0.210  
## morality"Stimulation"    -0.37481    0.47557   -0.79    0.432  
## morality"Tradition"      -0.84806    0.45860   -1.85    0.066 .
## morality"Universalism"   -0.56695    0.45389   -1.25    0.214  
## check_1                   0.03838    0.02511    1.53    0.129  
## check_3                   0.05687    0.03024    1.88    0.062 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.43 on 145 degrees of freedom
## Multiple R-squared:  0.246,  Adjusted R-squared:  0.122 
## F-statistic: 1.98 on 24 and 145 DF,  p-value: 0.00759
## 
## 
## $`Rep. Admin`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0342 -0.0527  0.0534  0.1665  0.6596 
## 
## Coefficients:
##                          Estimate Std. Error t value    Pr(>|t|)    
## (Intercept)               0.19410    0.37153    0.52       0.602    
## cond_label2.RelD-In       0.02423    0.07211    0.34       0.737    
## cond_label3.RelD-Out     -0.02838    0.07613   -0.37       0.710    
## cond_label4.LowD-In      -0.08989    0.09545   -0.94       0.348    
## cond_label5.LowD-Out     -0.02095    0.09445   -0.22       0.825    
## gender                    0.00590    0.04798    0.12       0.902    
## Age                       0.00172    0.00217    0.79       0.431    
## Race1,2                  -0.15046    0.24094   -0.62       0.533    
## Race1,3                   0.17526    0.19600    0.89       0.373    
## Race1,5                  -0.58301    0.24384   -2.39       0.018 *  
## Race1,7                   0.15136    0.24003    0.63       0.529    
## Race2                    -0.03973    0.09458   -0.42       0.675    
## Race3                     0.26652    0.12059    2.21       0.029 *  
## morality"Achievement"    -0.01592    0.34529   -0.05       0.963    
## morality"Benevolence"     0.00045    0.33935    0.00       0.999    
## morality"Conformity"      0.13581    0.37938    0.36       0.721    
## morality"Hedonism"       -0.62424    0.41715   -1.50       0.137    
## morality"Power"           0.18374    0.41019    0.45       0.655    
## morality"Security"       -0.11568    0.33689   -0.34       0.732    
## morality"Self-direction" -0.10405    0.33915   -0.31       0.759    
## morality"Stimulation"    -0.05925    0.36188   -0.16       0.870    
## morality"Tradition"      -0.06492    0.34897   -0.19       0.853    
## morality"Universalism"   -0.18573    0.34538   -0.54       0.592    
## check_1                  -0.02975    0.01911   -1.56       0.122    
## check_3                   0.13902    0.02301    6.04 0.000000012 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.33 on 145 degrees of freedom
## Multiple R-squared:  0.301,  Adjusted R-squared:  0.185 
## F-statistic:  2.6 on 24 and 145 DF,  p-value: 0.000257
## 
## 
## $Block
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.954 -0.123  0.107  0.228  0.638 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.23476    0.44686    0.53  0.60014    
## cond_label2.RelD-In       0.12364    0.08673    1.43  0.15611    
## cond_label3.RelD-Out      0.05425    0.09157    0.59  0.55448    
## cond_label4.LowD-In       0.00815    0.11480    0.07  0.94353    
## cond_label5.LowD-Out      0.31446    0.11360    2.77  0.00637 ** 
## gender                    0.09136    0.05770    1.58  0.11555    
## Age                       0.00129    0.00261    0.49  0.62168    
## Race1,2                   0.30008    0.28979    1.04  0.30215    
## Race1,3                  -0.13934    0.23573   -0.59  0.55539    
## Race1,5                  -0.38750    0.29328   -1.32  0.18849    
## Race1,7                   0.13949    0.28870    0.48  0.62970    
## Race2                     0.04247    0.11376    0.37  0.70946    
## Race3                    -0.21458    0.14504   -1.48  0.14119    
## morality"Achievement"    -0.30666    0.41529   -0.74  0.46145    
## morality"Benevolence"    -0.18167    0.40814   -0.45  0.65690    
## morality"Conformity"     -0.28462    0.45630   -0.62  0.53377    
## morality"Hedonism"       -0.50115    0.50172   -1.00  0.31953    
## morality"Power"           0.14148    0.49335    0.29  0.77470    
## morality"Security"       -0.17127    0.40519   -0.42  0.67315    
## morality"Self-direction" -0.23936    0.40791   -0.59  0.55825    
## morality"Stimulation"    -0.07728    0.43525   -0.18  0.85932    
## morality"Tradition"      -0.24799    0.41972   -0.59  0.55555    
## morality"Universalism"   -0.27855    0.41541   -0.67  0.50357    
## check_1                  -0.01741    0.02298   -0.76  0.45003    
## check_3                   0.09910    0.02768    3.58  0.00047 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.39 on 145 degrees of freedom
## Multiple R-squared:  0.215,  Adjusted R-squared:  0.085 
## F-statistic: 1.65 on 24 and 145 DF,  p-value: 0.0376

Moderations

Just significant moderations

Broad

For these analyses, I grouped conditions as just “Low”, “Relative”, and “High” diversity.

Main effects and scale information

Post hoc tests

## $Tightness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5condclean)
## 
## $cond_broad
##                     diff   lwr  upr p adj
## 2. Relative-1. High 0.78  0.34 1.21  0.00
## 3. Low-1. High      0.86  0.35 1.37  0.00
## 3. Low-2. Relative  0.08 -0.37 0.53  0.91
## 
## 
## $Status
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5condclean)
## 
## $cond_broad
##                        diff   lwr  upr p adj
## 2. Relative-1. High  0.0832 -0.49 0.66  0.94
## 3. Low-1. High       0.0027 -0.67 0.68  1.00
## 3. Low-2. Relative  -0.0805 -0.67 0.51  0.94
## 
## 
## $Domin.
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5condclean)
## 
## $cond_broad
##                      diff   lwr  upr p adj
## 2. Relative-1. High 0.166 -0.41 0.75  0.78
## 3. Low-1. High      0.191 -0.49 0.88  0.79
## 3. Low-2. Relative  0.024 -0.58 0.62  0.99
## 
## 
## $Monitor
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5condclean)
## 
## $cond_broad
##                     diff   lwr  upr p adj
## 2. Relative-1. High 0.36 -0.31 1.04  0.41
## 3. Low-1. High      0.50 -0.29 1.30  0.29
## 3. Low-2. Relative  0.14 -0.56 0.84  0.88
## 
## 
## $SOP
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5condclean)
## 
## $cond_broad
##                        diff   lwr   upr p adj
## 2. Relative-1. High -0.0057 -0.54 0.527  1.00
## 3. Low-1. High      -0.4672 -1.10 0.161  0.19
## 3. Low-2. Relative  -0.4615 -1.01 0.089  0.12
## 
## 
## $Moraliz.
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5condclean)
## 
## $cond_broad
##                      diff   lwr  upr p adj
## 2. Relative-1. High 0.032 -0.59 0.66  0.99
## 3. Low-1. High      0.264 -0.47 1.00  0.67
## 3. Low-2. Relative  0.232 -0.41 0.87  0.67
## 
## 
## $Affil.
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5condclean)
## 
## $cond_broad
##                       diff   lwr  upr p adj
## 2. Relative-1. High -0.045 -0.60 0.51  0.98
## 3. Low-1. High       0.067 -0.59 0.72  0.97
## 3. Low-2. Relative   0.112 -0.46 0.68  0.89
## 
## 
## $`Rep. Police`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5condclean)
## 
## $cond_broad
##                      diff   lwr  upr p adj
## 2. Relative-1. High 0.052 -0.15 0.25  0.81
## 3. Low-1. High      0.075 -0.16 0.31  0.74
## 3. Low-2. Relative  0.023 -0.19 0.23  0.96
## 
## 
## $`Rep. Admin`
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5condclean)
## 
## $cond_broad
##                       diff    lwr  upr p adj
## 2. Relative-1. High  0.066 -0.093 0.22  0.59
## 3. Low-1. High      -0.018 -0.205 0.17  0.97
## 3. Low-2. Relative  -0.084 -0.247 0.08  0.45
## 
## 
## $Block
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = y ~ cond_broad, data = exp1_5condclean)
## 
## $cond_broad
##                      diff    lwr  upr p adj
## 2. Relative-1. High 0.132 -0.046 0.31  0.19
## 3. Low-1. High      0.168 -0.042 0.38  0.14
## 3. Low-2. Relative  0.036 -0.148 0.22  0.89

Logistic regression

Police
## 
## Call:
## glm(formula = report_police ~ cond_broad, family = "binomial", 
##     data = exp1_5condclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)   
## (Intercept)             -1.099      0.348   -3.16   0.0016 **
## cond_broad2. Relative    0.262      0.420    0.62   0.5321   
## cond_broad3. Low         0.368      0.485    0.76   0.4483   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 205.97  on 169  degrees of freedom
## Residual deviance: 205.34  on 167  degrees of freedom
## AIC: 211.3
## 
## Number of Fisher Scoring iterations: 4
##           (Intercept) cond_broad2. Relative      cond_broad3. Low 
##                  0.33                  1.30                  1.44
Admin
## 
## Call:
## glm(formula = report_admin ~ cond_broad, family = "binomial", 
##     data = exp1_5condclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              1.504      0.391    3.85  0.00012 ***
## cond_broad2. Relative    0.524      0.516    1.02  0.30951    
## cond_broad3. Low        -0.118      0.556   -0.21  0.83220    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 145.44  on 169  degrees of freedom
## Residual deviance: 143.58  on 167  degrees of freedom
## AIC: 149.6
## 
## Number of Fisher Scoring iterations: 4
##           (Intercept) cond_broad2. Relative      cond_broad3. Low 
##                  4.50                  1.69                  0.89
Block
## 
## Call:
## glm(formula = block ~ cond_broad, family = "binomial", data = exp1_5condclean)
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)  
## (Intercept)              0.762      0.324    2.35    0.019 *
## cond_broad2. Relative    0.714      0.426    1.68    0.094 .
## cond_broad3. Low         0.972      0.548    1.77    0.076 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 175.54  on 169  degrees of freedom
## Residual deviance: 171.50  on 167  degrees of freedom
## AIC: 177.5
## 
## Number of Fisher Scoring iterations: 4
##           (Intercept) cond_broad2. Relative      cond_broad3. Low 
##                   2.1                   2.0                   2.6

Graphs

Full scale measures

Single Item measures

Controls

Full list

## $Tightness
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.8346 -0.5922  0.0124  0.5780  2.3192 
## 
## Coefficients:
##                          Estimate Std. Error t value   Pr(>|t|)    
## (Intercept)               5.48039    1.04872    5.23 0.00000058 ***
## cond_broad2. Relative     0.79840    0.19271    4.14 0.00005726 ***
## cond_broad3. Low          0.89498    0.23168    3.86    0.00017 ***
## gender                   -0.19268    0.14433   -1.34    0.18391    
## Age                      -0.00773    0.00639   -1.21    0.22815    
## Race1,2                  -0.27541    0.72220   -0.38    0.70349    
## Race1,3                   0.59240    0.59489    1.00    0.32095    
## Race1,5                  -0.20562    0.73832   -0.28    0.78102    
## Race1,7                   0.18901    0.72684    0.26    0.79519    
## Race2                    -0.05469    0.28382   -0.19    0.84746    
## Race3                     0.11192    0.36259    0.31    0.75801    
## morality"Achievement"    -1.12452    1.03869   -1.08    0.28072    
## morality"Benevolence"    -1.41311    1.02827   -1.37    0.17142    
## morality"Conformity"     -1.17314    1.13076   -1.04    0.30119    
## morality"Hedonism"       -2.26027    1.24960   -1.81    0.07250 .  
## morality"Power"          -0.51401    1.23669   -0.42    0.67827    
## morality"Security"       -1.33906    1.01461   -1.32    0.18893    
## morality"Self-direction" -1.52186    1.01750   -1.50    0.13685    
## morality"Stimulation"    -0.90731    1.08632   -0.84    0.40494    
## morality"Tradition"      -1.00567    1.05257   -0.96    0.34090    
## morality"Universalism"   -1.28903    1.04021   -1.24    0.21722    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1 on 149 degrees of freedom
## Multiple R-squared:  0.198,  Adjusted R-squared:  0.0899 
## F-statistic: 1.83 on 20 and 149 DF,  p-value: 0.0216
## 
## 
## $Status
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.446 -0.901 -0.165  0.481  3.719 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               5.723481   1.352371    4.23  0.00004 ***
## cond_broad2. Relative     0.147173   0.248513    0.59   0.5546    
## cond_broad3. Low         -0.031455   0.298765   -0.11   0.9163    
## gender                   -0.106055   0.186117   -0.57   0.5697    
## Age                       0.000957   0.008240    0.12   0.9077    
## Race1,2                  -0.684788   0.931311   -0.74   0.4633    
## Race1,3                  -1.083537   0.767135   -1.41   0.1599    
## Race1,5                   0.190504   0.952093    0.20   0.8417    
## Race1,7                  -0.827058   0.937291   -0.88   0.3790    
## Race2                     0.695870   0.365996    1.90   0.0592 .  
## Race3                    -0.146064   0.467581   -0.31   0.7552    
## morality"Achievement"    -2.981740   1.339440   -2.23   0.0275 *  
## morality"Benevolence"    -3.719707   1.326001   -2.81   0.0057 ** 
## morality"Conformity"     -2.730312   1.458164   -1.87   0.0631 .  
## morality"Hedonism"       -4.047383   1.611419   -2.51   0.0131 *  
## morality"Power"          -2.285991   1.594759   -1.43   0.1538    
## morality"Security"       -3.414174   1.308385   -2.61   0.0100 ** 
## morality"Self-direction" -3.413074   1.312112   -2.60   0.0102 *  
## morality"Stimulation"    -3.648538   1.400853   -2.60   0.0101 *  
## morality"Tradition"      -3.054955   1.357332   -2.25   0.0259 *  
## morality"Universalism"   -3.435361   1.341390   -2.56   0.0114 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 149 degrees of freedom
## Multiple R-squared:  0.142,  Adjusted R-squared:  0.0271 
## F-statistic: 1.24 on 20 and 149 DF,  p-value: 0.233
## 
## 
## $Domin.
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.271 -0.923 -0.029  0.818  3.951 
## 
## Coefficients:
##                          Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)               6.81264    1.36634    4.99 0.0000017 ***
## cond_broad2. Relative     0.11299    0.25108    0.45    0.6534    
## cond_broad3. Low          0.17146    0.30185    0.57    0.5709    
## gender                   -0.05959    0.18804   -0.32    0.7518    
## Age                       0.00362    0.00833    0.43    0.6643    
## Race1,2                  -1.82342    0.94093   -1.94    0.0545 .  
## Race1,3                  -0.12879    0.77506   -0.17    0.8683    
## Race1,5                  -1.43225    0.96193   -1.49    0.1386    
## Race1,7                   0.01960    0.94697    0.02    0.9835    
## Race2                    -0.13971    0.36978   -0.38    0.7061    
## Race3                    -0.43929    0.47241   -0.93    0.3539    
## morality"Achievement"    -3.54393    1.35327   -2.62    0.0097 ** 
## morality"Benevolence"    -3.88901    1.33970   -2.90    0.0043 ** 
## morality"Conformity"     -3.66872    1.47322   -2.49    0.0139 *  
## morality"Hedonism"       -4.66854    1.62806   -2.87    0.0047 ** 
## morality"Power"          -2.90650    1.61123   -1.80    0.0733 .  
## morality"Security"       -3.96808    1.32190   -3.00    0.0031 ** 
## morality"Self-direction" -4.27731    1.32566   -3.23    0.0015 ** 
## morality"Stimulation"    -4.22701    1.41532   -2.99    0.0033 ** 
## morality"Tradition"      -3.58465    1.37135   -2.61    0.0099 ** 
## morality"Universalism"   -3.80880    1.35524   -2.81    0.0056 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.3 on 149 degrees of freedom
## Multiple R-squared:  0.147,  Adjusted R-squared:  0.033 
## F-statistic: 1.29 on 20 and 149 DF,  p-value: 0.195
## 
## 
## $Monitor
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.892 -0.916  0.164  0.957  3.284 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               6.34605    1.60558    3.95  0.00012 ***
## cond_broad2. Relative     0.28255    0.29504    0.96  0.33978    
## cond_broad3. Low          0.56230    0.35470    1.59  0.11502    
## gender                    0.07332    0.22096    0.33  0.74049    
## Age                       0.00806    0.00978    0.82  0.41154    
## Race1,2                   0.76587    1.10568    0.69  0.48959    
## Race1,3                   0.60543    0.91077    0.66  0.50724    
## Race1,5                  -0.87178    1.13035   -0.77  0.44178    
## Race1,7                   2.53177    1.11278    2.28  0.02432 *  
## Race2                    -0.22423    0.43452   -0.52  0.60659    
## Race3                     0.85808    0.55513    1.55  0.12429    
## morality"Achievement"    -3.00371    1.59022   -1.89  0.06085 .  
## morality"Benevolence"    -3.17129    1.57427   -2.01  0.04576 *  
## morality"Conformity"     -3.49321    1.73118   -2.02  0.04540 *  
## morality"Hedonism"       -4.45073    1.91313   -2.33  0.02134 *  
## morality"Power"          -1.14454    1.89335   -0.60  0.54643    
## morality"Security"       -3.02009    1.55335   -1.94  0.05375 .  
## morality"Self-direction" -3.33331    1.55778   -2.14  0.03400 *  
## morality"Stimulation"    -2.84561    1.66314   -1.71  0.08916 .  
## morality"Tradition"      -3.27066    1.61147   -2.03  0.04417 *  
## morality"Universalism"   -3.78792    1.59254   -2.38  0.01865 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.5 on 149 degrees of freedom
## Multiple R-squared:  0.137,  Adjusted R-squared:  0.021 
## F-statistic: 1.18 on 20 and 149 DF,  p-value: 0.278
## 
## 
## $SOP
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.503 -0.738  0.049  0.783  2.728 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               3.89709    1.31605    2.96   0.0036 **
## cond_broad2. Relative    -0.07312    0.24184   -0.30   0.7628   
## cond_broad3. Low         -0.55852    0.29074   -1.92   0.0566 . 
## gender                    0.24719    0.18112    1.36   0.1744   
## Age                       0.00966    0.00802    1.20   0.2303   
## Race1,2                   0.02555    0.90630    0.03   0.9775   
## Race1,3                   0.88464    0.74653    1.18   0.2379   
## Race1,5                  -0.74288    0.92652   -0.80   0.4240   
## Race1,7                  -0.18977    0.91212   -0.21   0.8355   
## Race2                     0.19510    0.35617    0.55   0.5847   
## Race3                     0.28550    0.45502    0.63   0.5313   
## morality"Achievement"    -0.53047    1.30347   -0.41   0.6846   
## morality"Benevolence"    -0.27509    1.29039   -0.21   0.8315   
## morality"Conformity"     -0.11956    1.41900   -0.08   0.9330   
## morality"Hedonism"        0.42374    1.56814    0.27   0.7874   
## morality"Power"          -0.32964    1.55193   -0.21   0.8321   
## morality"Security"       -0.23301    1.27325   -0.18   0.8550   
## morality"Self-direction" -0.55863    1.27687   -0.44   0.6624   
## morality"Stimulation"    -0.52626    1.36323   -0.39   0.7000   
## morality"Tradition"      -0.74708    1.32088   -0.57   0.5725   
## morality"Universalism"   -0.71984    1.30537   -0.55   0.5822   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 149 degrees of freedom
## Multiple R-squared:  0.0824, Adjusted R-squared:  -0.0408 
## F-statistic: 0.669 on 20 and 149 DF,  p-value: 0.852
## 
## 
## $Moraliz.
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.349 -0.669  0.097  0.888  3.133 
## 
## Coefficients:
##                           Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)               7.068265   1.492855    4.73 0.0000051 ***
## cond_broad2. Relative    -0.127705   0.274329   -0.47     0.642    
## cond_broad3. Low          0.036948   0.329801    0.11     0.911    
## gender                    0.053493   0.205451    0.26     0.795    
## Age                       0.000161   0.009096    0.02     0.986    
## Race1,2                  -0.030378   1.028055   -0.03     0.976    
## Race1,3                   1.008989   0.846825    1.19     0.235    
## Race1,5                  -2.303887   1.050996   -2.19     0.030 *  
## Race1,7                   1.595563   1.034657    1.54     0.125    
## Race2                     0.029545   0.404016    0.07     0.942    
## Race3                     0.463515   0.516153    0.90     0.371    
## morality"Achievement"    -2.615759   1.478581   -1.77     0.079 .  
## morality"Benevolence"    -2.433990   1.463746   -1.66     0.098 .  
## morality"Conformity"     -2.641758   1.609638   -1.64     0.103    
## morality"Hedonism"       -1.521250   1.778813   -0.86     0.394    
## morality"Power"          -2.661112   1.760423   -1.51     0.133    
## morality"Security"       -2.871345   1.444300   -1.99     0.049 *  
## morality"Self-direction" -2.837449   1.448414   -1.96     0.052 .  
## morality"Stimulation"    -3.486829   1.546375   -2.25     0.026 *  
## morality"Tradition"      -2.897309   1.498332   -1.93     0.055 .  
## morality"Universalism"   -3.190005   1.480734   -2.15     0.033 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.4 on 149 degrees of freedom
## Multiple R-squared:  0.117,  Adjusted R-squared:  -0.00145 
## F-statistic: 0.988 on 20 and 149 DF,  p-value: 0.48
## 
## 
## $Affil.
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -2.436 -0.759 -0.027  0.575  3.807 
## 
## Coefficients:
##                          Estimate Std. Error t value    Pr(>|t|)    
## (Intercept)               7.17167    1.24040    5.78 0.000000042 ***
## cond_broad2. Relative    -0.03285    0.22794   -0.14     0.88559    
## cond_broad3. Low          0.05048    0.27403    0.18     0.85410    
## gender                   -0.27217    0.17071   -1.59     0.11298    
## Age                       0.00360    0.00756    0.48     0.63417    
## Race1,2                  -0.29529    0.85420   -0.35     0.73006    
## Race1,3                  -0.50836    0.70362   -0.72     0.47112    
## Race1,5                  -1.03380    0.87326   -1.18     0.23836    
## Race1,7                  -0.67332    0.85968   -0.78     0.43474    
## Race2                     0.04133    0.33569    0.12     0.90218    
## Race3                     0.15073    0.42887    0.35     0.72574    
## morality"Achievement"    -3.65077    1.22854   -2.97     0.00345 ** 
## morality"Benevolence"    -4.49872    1.21621   -3.70     0.00030 ***
## morality"Conformity"     -3.54102    1.33743   -2.65     0.00898 ** 
## morality"Hedonism"       -5.40509    1.47800   -3.66     0.00035 ***
## morality"Power"          -4.45736    1.46272   -3.05     0.00273 ** 
## morality"Security"       -4.79397    1.20005   -3.99     0.00010 ***
## morality"Self-direction" -4.10760    1.20347   -3.41     0.00083 ***
## morality"Stimulation"    -4.17629    1.28487   -3.25     0.00143 ** 
## morality"Tradition"      -3.87097    1.24495   -3.11     0.00225 ** 
## morality"Universalism"   -4.53101    1.23033   -3.68     0.00032 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.2 on 149 degrees of freedom
## Multiple R-squared:  0.225,  Adjusted R-squared:  0.121 
## F-statistic: 2.17 on 20 and 149 DF,  p-value: 0.00465
## 
## 
## $`Rep. Police`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.590 -0.302 -0.194  0.429  0.961 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)  
## (Intercept)               0.90459    0.47114    1.92    0.057 .
## cond_broad2. Relative     0.06442    0.08658    0.74    0.458  
## cond_broad3. Low          0.05881    0.10408    0.57    0.573  
## gender                   -0.13452    0.06484   -2.07    0.040 *
## Age                       0.00447    0.00287    1.56    0.121  
## Race1,2                   0.33957    0.32445    1.05    0.297  
## Race1,3                   0.03488    0.26726    0.13    0.896  
## Race1,5                  -0.20759    0.33169   -0.63    0.532  
## Race1,7                   0.70893    0.32654    2.17    0.032 *
## Race2                     0.15175    0.12751    1.19    0.236  
## Race3                    -0.02251    0.16290   -0.14    0.890  
## morality"Achievement"    -0.46832    0.46664   -1.00    0.317  
## morality"Benevolence"    -0.63364    0.46196   -1.37    0.172  
## morality"Conformity"     -0.44079    0.50800   -0.87    0.387  
## morality"Hedonism"       -0.47866    0.56139   -0.85    0.395  
## morality"Power"          -0.54533    0.55559   -0.98    0.328  
## morality"Security"       -0.61483    0.45582   -1.35    0.179  
## morality"Self-direction" -0.73150    0.45712   -1.60    0.112  
## morality"Stimulation"    -0.55497    0.48803   -1.14    0.257  
## morality"Tradition"      -0.97142    0.47287   -2.05    0.042 *
## morality"Universalism"   -0.73884    0.46732   -1.58    0.116  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.45 on 149 degrees of freedom
## Multiple R-squared:  0.156,  Adjusted R-squared:  0.0423 
## F-statistic: 1.37 on 20 and 149 DF,  p-value: 0.144
## 
## 
## $`Rep. Admin`
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0029  0.0186  0.1200  0.1841  0.5428 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)  
## (Intercept)               0.85999    0.38567    2.23    0.027 *
## cond_broad2. Relative     0.05529    0.07087    0.78    0.437  
## cond_broad3. Low         -0.02012    0.08520   -0.24    0.814  
## gender                    0.04154    0.05308    0.78    0.435  
## Age                       0.00117    0.00235    0.50    0.620  
## Race1,2                  -0.33471    0.26559   -1.26    0.210  
## Race1,3                   0.14479    0.21877    0.66    0.509  
## Race1,5                  -0.39898    0.27152   -1.47    0.144  
## Race1,7                   0.13673    0.26729    0.51    0.610  
## Race2                    -0.03630    0.10437   -0.35    0.728  
## Race3                     0.20364    0.13334    1.53    0.129  
## morality"Achievement"    -0.11652    0.38198   -0.31    0.761  
## morality"Benevolence"    -0.06895    0.37815   -0.18    0.856  
## morality"Conformity"     -0.01979    0.41584   -0.05    0.962  
## morality"Hedonism"       -0.52524    0.45954   -1.14    0.255  
## morality"Power"           0.08233    0.45479    0.18    0.857  
## morality"Security"       -0.15050    0.37312   -0.40    0.687  
## morality"Self-direction" -0.17258    0.37419   -0.46    0.645  
## morality"Stimulation"    -0.15019    0.39949   -0.38    0.707  
## morality"Tradition"      -0.17652    0.38708   -0.46    0.649  
## morality"Universalism"   -0.29324    0.38253   -0.77    0.445  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.37 on 149 degrees of freedom
## Multiple R-squared:  0.0933, Adjusted R-squared:  -0.0285 
## F-statistic: 0.766 on 20 and 149 DF,  p-value: 0.75
## 
## 
## $Block
## 
## Call:
## lm(formula = formula_list[[variable]], data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9996  0.0076  0.1367  0.2473  0.6063 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)  
## (Intercept)               0.71200    0.43303    1.64    0.102  
## cond_broad2. Relative     0.12725    0.07957    1.60    0.112  
## cond_broad3. Low          0.18739    0.09566    1.96    0.052 .
## gender                    0.11629    0.05959    1.95    0.053 .
## Age                       0.00120    0.00264    0.46    0.650  
## Race1,2                   0.09889    0.29820    0.33    0.741  
## Race1,3                  -0.15286    0.24563   -0.62    0.535  
## Race1,5                  -0.25542    0.30486   -0.84    0.403  
## Race1,7                   0.12949    0.30012    0.43    0.667  
## Race2                     0.02122    0.11719    0.18    0.857  
## Race3                    -0.22460    0.14972   -1.50    0.136  
## morality"Achievement"    -0.33680    0.42889   -0.79    0.434  
## morality"Benevolence"    -0.23746    0.42458   -0.56    0.577  
## morality"Conformity"     -0.30191    0.46690   -0.65    0.519  
## morality"Hedonism"       -0.44664    0.51597   -0.87    0.388  
## morality"Power"           0.02175    0.51064    0.04    0.966  
## morality"Security"       -0.18043    0.41894   -0.43    0.667  
## morality"Self-direction" -0.29445    0.42013   -0.70    0.484  
## morality"Stimulation"    -0.13958    0.44855   -0.31    0.756  
## morality"Tradition"      -0.29962    0.43461   -0.69    0.492  
## morality"Universalism"   -0.35937    0.42951   -0.84    0.404  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.41 on 149 degrees of freedom
## Multiple R-squared:  0.113,  Adjusted R-squared:  -0.00627 
## F-statistic: 0.947 on 20 and 149 DF,  p-value: 0.529

Moderations

Just significant moderations