This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.
getwd()
## [1] "C:/Users/Julkowska Lab/Desktop/R codes by Maryam/20240306_ICP-MS_FW_DW_Soil_grown_duf_wrky_2xko"
list.files(pattern = ".csv")
## [1] "20240402_ICP_soil_5geno_arabidopsis_phenorigs.csv"
ICP_wd <- read.csv("20240402_ICP_soil_5geno_arabidopsis_phenorigs.csv")
ICP_wd
ICP_wd$All.ID2<-paste(ICP_wd$Accession,ICP_wd$Tissue, sep="_")
ICP_wd
library(ggplot2)
library(ggpubr)
library(multcompView)
## Warning: package 'multcompView' was built under R version 4.3.2
aov(Na.con.mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
## Call:
## aov(formula = Na.con.mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
##
## Terms:
## All.ID2 Residuals
## Sum of Squares 389.2321 384.4170
## Deg. of Freedom 9 102
##
## Residual standard error: 1.941338
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(Na.con.mg.mg.dry.weight ~ All.ID2, data = ICP_wd))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Na.con.mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
##
## $All.ID2
## diff lwr upr p adj
## col_sh-col_ro 3.19998578 0.5786010 5.8213706 0.0054059
## d_ro-col_ro -2.34464449 -4.9084094 0.2191204 0.1033193
## d_sh-col_ro 1.03774817 -1.5260167 3.6015131 0.9493133
## duf_ro-col_ro -1.41397899 -4.1028783 1.2749203 0.7923412
## duf_sh-col_ro 2.41645668 -0.2049281 5.0378415 0.0974417
## e_ro-col_ro -2.14068920 -4.8295885 0.5482101 0.2430026
## e_sh-col_ro 0.95997022 -1.7289291 3.6488695 0.9773112
## w_ro-col_ro -1.10312432 -3.6668892 1.4606406 0.9270707
## w_sh-col_ro 2.10277463 -0.4609903 4.6665395 0.2073594
## d_ro-col_sh -5.54463027 -8.1660151 -2.9232455 0.0000000
## d_sh-col_sh -2.16223761 -4.7836224 0.4591472 0.2009076
## duf_ro-col_sh -4.61396477 -7.3578575 -1.8700720 0.0000159
## duf_sh-col_sh -0.78352910 -3.4612942 1.8942360 0.9944148
## e_ro-col_sh -5.34067498 -8.0845677 -2.5967823 0.0000003
## e_sh-col_sh -2.24001556 -4.9839083 0.5038772 0.2127690
## w_ro-col_sh -4.30311010 -6.9244949 -1.6817253 0.0000277
## w_sh-col_sh -1.09721115 -3.7185959 1.5241736 0.9379777
## d_sh-d_ro 3.38239266 0.8186278 5.9461576 0.0017461
## duf_ro-d_ro 0.93066550 -1.7582338 3.6195648 0.9815890
## duf_sh-d_ro 4.76110117 2.1397164 7.3824860 0.0000023
## e_ro-d_ro 0.20395528 -2.4849440 2.8928546 0.9999999
## e_sh-d_ro 3.30461470 0.6157154 5.9935140 0.0049319
## w_ro-d_ro 1.24152017 -1.3222447 3.8052851 0.8608657
## w_sh-d_ro 4.44741912 1.8836542 7.0111840 0.0000076
## duf_ro-d_sh -2.45172716 -5.1406265 0.2371722 0.1055970
## duf_sh-d_sh 1.37870851 -1.2426763 4.0000933 0.7921803
## e_ro-d_sh -3.17843737 -5.8673367 -0.4895381 0.0082443
## e_sh-d_sh -0.07777795 -2.7666773 2.6111214 1.0000000
## w_ro-d_sh -2.14087249 -4.7046374 0.4228924 0.1872644
## w_sh-d_sh 1.06502646 -1.4987384 3.6287914 0.9407056
## duf_sh-duf_ro 3.83043567 1.0865429 6.5743284 0.0006903
## e_ro-duf_ro -0.72671021 -3.5351740 2.0817535 0.9977923
## e_sh-duf_ro 2.37394921 -0.4345145 5.1824129 0.1742657
## w_ro-duf_ro 0.31085467 -2.3780446 2.9997540 0.9999973
## w_sh-duf_ro 3.51675362 0.8278543 6.2056529 0.0019981
## e_ro-duf_sh -4.55714588 -7.3010386 -1.8132532 0.0000213
## e_sh-duf_sh -1.45648646 -4.2003792 1.2874063 0.7832702
## w_ro-duf_sh -3.51958100 -6.1409658 -0.8981962 0.0013222
## w_sh-duf_sh -0.31368205 -2.9350668 2.3077027 0.9999964
## e_sh-e_ro 3.10065942 0.2921957 5.9091232 0.0185633
## w_ro-e_ro 1.03756488 -1.6513344 3.7264642 0.9623660
## w_sh-e_ro 4.24346384 1.5545645 6.9323632 0.0000657
## w_ro-e_sh -2.06309454 -4.7519939 0.6258048 0.2907345
## w_sh-e_sh 1.14280442 -1.5460949 3.8317037 0.9321231
## w_sh-w_ro 3.20589895 0.6421340 5.7696639 0.0038748
P7 = Output$All.ID2[,'p adj']
stat.test<- multcompLetters(P7)
stat.test
## col_sh d_ro d_sh duf_ro duf_sh e_ro e_sh w_ro w_sh col_ro
## "a" "b" "acd" "bc" "ad" "b" "acd" "bc" "ad" "bcd"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
test$info <- strsplit(test$group1, "_")
test$info[[1]][2]
## [1] "sh"
#test$info[[1]][3]
test$Accession <- "none"
test$Tissue<- "none"
test
for(i in 1:nrow(test)){
test$Accession[i] <- test$info[[i]][1]
test$Tissue[i] <- test$info[[i]][2]
}
test2 <- test[,c(5:6,1)]
test2$group1 <- test2$Accession
test2$group2 <- test2$Accession
ICP_wd
ICP_wd2 <- subset(ICP_wd, ICP_wd$Na.con.mg.mg.dry.weight < 15)
ICP_wd3 <- subset(ICP_wd2, ICP_wd2$Na.con.mg.mg.dry.weight > 3)
ICP_wd3$Accession <- factor(ICP_wd3$Accession, levels = c("col", "duf", "w", "d","e"))
Na_content_wd <- ggplot(data = ICP_wd3, mapping = aes(x = Accession, y = Na.con.mg.mg.dry.weight, colour = Accession))
Na_content_wd <- Na_content_wd + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
Na_content_wd <- Na_content_wd + facet_grid(~Tissue , scales = "free_y")
Na_content_wd <- Na_content_wd + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
Na_content_wd <- Na_content_wd + scale_color_manual(values = c("blue", "plum", "rosybrown1", "hotpink","red"))
Na_content_wd <- Na_content_wd + ylab("Na content, mg/mg dry weight") + xlab("")+stat_pvalue_manual(test2, label = "Tukey", y.position = 20)
Na_content_wd <- Na_content_wd + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
Na_content_wd <- Na_content_wd + rremove("legend")
Na_content_wd
aov(K.con..mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
## Call:
## aov(formula = K.con..mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
##
## Terms:
## All.ID2 Residuals
## Sum of Squares 499.958 2383.797
## Deg. of Freedom 9 102
##
## Residual standard error: 4.83431
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(K.con..mg.mg.dry.weight ~ All.ID2, data = ICP_wd))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = K.con..mg.mg.dry.weight ~ All.ID2, data = ICP_wd)
##
## $All.ID2
## diff lwr upr p adj
## col_sh-col_ro 2.26491446 -4.2628446 8.792673 0.9812786
## d_ro-col_ro 6.86316830 0.4788940 13.247443 0.0247463
## d_sh-col_ro 5.99120556 -0.3930687 12.375480 0.0850699
## duf_ro-col_ro 6.00469304 -0.6911903 12.700576 0.1188310
## duf_sh-col_ro 6.23111745 -0.2966416 12.758876 0.0743285
## e_ro-col_ro 5.09201218 -1.6038712 11.787896 0.3027421
## e_sh-col_ro 3.48947744 -3.2064059 10.185361 0.8008179
## w_ro-col_ro 5.77869607 -0.6055782 12.162970 0.1113021
## w_sh-col_ro 6.03023740 -0.3540369 12.414512 0.0808550
## d_ro-col_sh 4.59825383 -1.9295052 11.126013 0.4117796
## d_sh-col_sh 3.72629109 -2.8014679 10.254050 0.7041134
## duf_ro-col_sh 3.73977858 -3.0930491 10.572606 0.7517892
## duf_sh-col_sh 3.96620299 -2.7019540 10.634360 0.6528764
## e_ro-col_sh 2.82709772 -4.0057299 9.659925 0.9421131
## e_sh-col_sh 1.22456298 -5.6082647 8.057391 0.9998861
## w_ro-col_sh 3.51378161 -3.0139774 10.041541 0.7692527
## w_sh-col_sh 3.76532294 -2.7624361 10.293082 0.6915409
## d_sh-d_ro -0.87196274 -7.2562370 5.512312 0.9999887
## duf_ro-d_ro -0.85847525 -7.5543586 5.837408 0.9999935
## duf_sh-d_ro -0.63205084 -7.1598099 5.895708 0.9999994
## e_ro-d_ro -1.77115611 -8.4670395 4.924727 0.9973856
## e_sh-d_ro -3.37369085 -10.0695742 3.322193 0.8303848
## w_ro-d_ro -1.08447222 -7.4687465 5.299802 0.9999274
## w_sh-d_ro -0.83293089 -7.2172052 5.551343 0.9999924
## duf_ro-d_sh 0.01348749 -6.6823959 6.709371 1.0000000
## duf_sh-d_sh 0.23991190 -6.2878471 6.767671 1.0000000
## e_ro-d_sh -0.89919337 -7.5950767 5.796690 0.9999902
## e_sh-d_sh -2.50172811 -9.1976115 4.194155 0.9693963
## w_ro-d_sh -0.21250948 -6.5967838 6.171765 1.0000000
## w_sh-d_sh 0.03903185 -6.3452424 6.423306 1.0000000
## duf_sh-duf_ro 0.22642441 -6.6064033 7.059252 1.0000000
## e_ro-duf_ro -0.91268086 -7.9063029 6.080941 0.9999924
## e_sh-duf_ro -2.51521560 -9.5088377 4.478406 0.9761736
## w_ro-duf_ro -0.22599697 -6.9218803 6.469886 1.0000000
## w_sh-duf_ro 0.02554436 -6.6703390 6.721428 1.0000000
## e_ro-duf_sh -1.13910527 -7.9719329 5.693722 0.9999380
## e_sh-duf_sh -2.74164001 -9.5744677 4.091188 0.9519635
## w_ro-duf_sh -0.45242138 -6.9801804 6.075338 1.0000000
## w_sh-duf_sh -0.20088005 -6.7286391 6.326879 1.0000000
## e_sh-e_ro -1.60253474 -8.5961568 5.391087 0.9991494
## w_ro-e_ro 0.68668389 -6.0091995 7.382567 0.9999991
## w_sh-e_ro 0.93822522 -5.7576581 7.634109 0.9999859
## w_ro-e_sh 2.28921863 -4.4066647 8.985102 0.9830709
## w_sh-e_sh 2.54075996 -4.1551234 9.236643 0.9661833
## w_sh-w_ro 0.25154133 -6.1327330 6.635816 1.0000000
P6 = Output$All.ID2[,'p adj']
stat.test<- multcompLetters(P6)
stat.test
## col_sh d_ro d_sh duf_ro duf_sh e_ro e_sh w_ro w_sh col_ro
## "ab" "a" "ab" "ab" "ab" "ab" "ab" "ab" "ab" "b"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
test$info <- strsplit(test$group1, "_")
test$info[[1]][2]
## [1] "sh"
#test$info[[1]][3]
test$Accession <- "none"
test$Tissue<- "none"
test
for(i in 1:nrow(test)){
test$Accession[i] <- test$info[[i]][1]
test$Tissue[i] <- test$info[[i]][2]
}
test2 <- test[,c(5:6,1)]
test2$group1 <- test2$Accession
test2$group2 <- test2$Accession
ICP_wd
ICP_wd4 <- subset(ICP_wd, ICP_wd$K.con..mg.mg.dry.weight < 35)
ICP_wd5 <- subset(ICP_wd, ICP_wd$K.con..mg.mg.dry.weight >10)
ICP_wd$Accession <- factor(ICP_wd$Accession, levels = c("col", "duf", "w", "d","e"))
k_content_wd <- ggplot(data = ICP_wd5, mapping = aes(x = Accession, y = K.con..mg.mg.dry.weight, colour = Accession))
k_content_wd <- k_content_wd + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
k_content_wd <- k_content_wd + facet_grid(~Tissue , scales = "free_y")
k_content_wd <- k_content_wd + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
k_content_wd <- k_content_wd + scale_color_manual(values = c("blue", "plum", "rosybrown1", "hotpink","red"))
k_content_wd <- k_content_wd + ylab("K content, mg/mg dry weight") + xlab("")+stat_pvalue_manual(test2, label = "Tukey", y.position = 45)
k_content_wd <- k_content_wd + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
k_content_wd <- k_content_wd + rremove("legend")
k_content_wd
aov(Na.K.ratio ~ All.ID2, data = ICP_wd)
## Call:
## aov(formula = Na.K.ratio ~ All.ID2, data = ICP_wd)
##
## Terms:
## All.ID2 Residuals
## Sum of Squares 0.6074367 0.7566360
## Deg. of Freedom 9 102
##
## Residual standard error: 0.08612781
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(Na.K.ratio ~ All.ID2, data = ICP_wd))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Na.K.ratio ~ All.ID2, data = ICP_wd)
##
## $All.ID2
## diff lwr upr p adj
## col_sh-col_ro 0.072751231 -0.043546967 0.189049429 0.5847438
## d_ro-col_ro -0.167560703 -0.281302584 -0.053818821 0.0002609
## d_sh-col_ro -0.057691830 -0.171433711 0.056050052 0.8248094
## duf_ro-col_ro -0.125368446 -0.244661938 -0.006074954 0.0312147
## duf_sh-col_ro -0.014084398 -0.130382596 0.102213800 0.9999960
## e_ro-col_ro -0.154069990 -0.273363482 -0.034776498 0.0024192
## e_sh-col_ro -0.032450585 -0.151744077 0.086842907 0.9967641
## w_ro-col_ro -0.123225819 -0.236967701 -0.009483937 0.0227971
## w_sh-col_ro -0.017471037 -0.131212919 0.096270845 0.9999691
## d_ro-col_sh -0.240311934 -0.356610132 -0.124013735 0.0000001
## d_sh-col_sh -0.130443061 -0.246741259 -0.014144862 0.0155351
## duf_ro-col_sh -0.198119677 -0.319852961 -0.076386392 0.0000336
## duf_sh-col_sh -0.086835629 -0.205635150 0.031963892 0.3581016
## e_ro-col_sh -0.226821221 -0.348554505 -0.105087937 0.0000012
## e_sh-col_sh -0.105201816 -0.226935100 0.016531468 0.1520081
## w_ro-col_sh -0.195977050 -0.312275248 -0.079678852 0.0000152
## w_sh-col_sh -0.090222268 -0.206520466 0.026075930 0.2760850
## d_sh-d_ro 0.109868873 -0.003873009 0.223610755 0.0674445
## duf_ro-d_ro 0.042192257 -0.077101235 0.161485749 0.9786902
## duf_sh-d_ro 0.153476305 0.037178107 0.269774503 0.0017385
## e_ro-d_ro 0.013490713 -0.105802779 0.132784205 0.9999978
## e_sh-d_ro 0.135110118 0.015816626 0.254403610 0.0138828
## w_ro-d_ro 0.044334884 -0.069406998 0.158076765 0.9598888
## w_sh-d_ro 0.150089666 0.036347784 0.263831547 0.0017408
## duf_ro-d_sh -0.067676616 -0.186970108 0.051616876 0.7114493
## duf_sh-d_sh 0.043607432 -0.072690766 0.159905630 0.9686784
## e_ro-d_sh -0.096378160 -0.215671652 0.022915332 0.2250689
## e_sh-d_sh 0.025241245 -0.094052247 0.144534737 0.9995522
## w_ro-d_sh -0.065533989 -0.179275871 0.048207892 0.6929216
## w_sh-d_sh 0.040220793 -0.073521089 0.153962674 0.9787184
## duf_sh-duf_ro 0.111284048 -0.010449236 0.233017332 0.1036241
## e_ro-duf_ro -0.028701544 -0.153299533 0.095896444 0.9991129
## e_sh-duf_ro 0.092917861 -0.031680128 0.217515849 0.3297289
## w_ro-duf_ro 0.002142627 -0.117150865 0.121436118 1.0000000
## w_sh-duf_ro 0.107897409 -0.011396083 0.227190901 0.1118948
## e_ro-duf_sh -0.139985592 -0.261718876 -0.018252308 0.0115926
## e_sh-duf_sh -0.018366187 -0.140099471 0.103367097 0.9999734
## w_ro-duf_sh -0.109141421 -0.225439619 0.007156777 0.0850487
## w_sh-duf_sh -0.003386639 -0.119684837 0.112911559 1.0000000
## e_sh-e_ro 0.121619405 -0.002978584 0.246217394 0.0617750
## w_ro-e_ro 0.030844171 -0.088449321 0.150137663 0.9978054
## w_sh-e_ro 0.136598953 0.017305461 0.255892445 0.0121978
## w_ro-e_sh -0.090775234 -0.210068726 0.028518258 0.3019000
## w_sh-e_sh 0.014979548 -0.104313944 0.134273040 0.9999945
## w_sh-w_ro 0.105754782 -0.007987100 0.219496664 0.0913441
P8 = Output$All.ID2[,'p adj']
stat.test<- multcompLetters(P8)
stat.test
## col_sh d_ro d_sh duf_ro duf_sh e_ro e_sh w_ro w_sh col_ro
## "a" "b" "bcde" "bcd" "ace" "bd" "acde" "bcd" "ace" "ae"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
test$info <- strsplit(test$group1, "_")
test$info[[1]][2]
## [1] "sh"
#test$info[[1]][3]
test$Accession <- "none"
test$Tissue<- "none"
test
for(i in 1:nrow(test)){
test$Accession[i] <- test$info[[i]][1]
test$Tissue[i] <- test$info[[i]][2]
}
test2 <- test[,c(5:6,1)]
test2$group1 <- test2$Accession
test2$group2 <- test2$Accession
ICP_wd
ICP_wd6 <- subset(ICP_wd, ICP_wd$Na.K.ratio < 0.6)
ICP_wd6$Accession <- factor(ICP_wd6$Accession, levels = c("col", "duf", "w", "d","e"))
Nak_ratio_wd <- ggplot(data = ICP_wd6, mapping = aes(x = Accession, y = Na.K.ratio, colour = Accession))
Nak_ratio_wd <- Nak_ratio_wd + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
Nak_ratio_wd <- Nak_ratio_wd + facet_grid(~Tissue, scales = "free_y")
Nak_ratio_wd <- Nak_ratio_wd + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
Nak_ratio_wd <- Nak_ratio_wd + scale_color_manual(values = c("blue", "plum", "rosybrown1", "hotpink","red"))
Nak_ratio_wd <- Nak_ratio_wd + ylab("Na+/K+ ratio") + xlab("")+stat_pvalue_manual(test2, label = "Tukey", y.position = 0.65)
Nak_ratio_wd <- Nak_ratio_wd + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
Nak_ratio_wd <- Nak_ratio_wd + rremove("legend")
Nak_ratio_wd
aov(DW.mg ~ All.ID2, data = ICP_wd)
## Call:
## aov(formula = DW.mg ~ All.ID2, data = ICP_wd)
##
## Terms:
## All.ID2 Residuals
## Sum of Squares 10266.256 5453.984
## Deg. of Freedom 9 102
##
## Residual standard error: 7.312348
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(DW.mg ~ All.ID2, data = ICP_wd))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = DW.mg ~ All.ID2, data = ICP_wd)
##
## $All.ID2
## diff lwr upr p adj
## col_sh-col_ro 21.9545455 12.080698 31.828393 0.0000000
## d_ro-col_ro -0.1083333 -9.765147 9.548480 1.0000000
## d_sh-col_ro 22.4083333 12.751520 32.065147 0.0000000
## duf_ro-col_ro 1.4400000 -8.688152 11.568152 0.9999840
## duf_sh-col_ro 17.1545455 7.280698 27.028393 0.0000073
## e_ro-col_ro -0.5100000 -10.638152 9.618152 1.0000000
## e_sh-col_ro 17.3000000 7.171848 27.428152 0.0000110
## w_ro-col_ro -0.3916667 -10.048480 9.265147 1.0000000
## w_sh-col_ro 14.4416667 4.784853 24.098480 0.0001956
## d_ro-col_sh -22.0628788 -31.936727 -12.189031 0.0000000
## d_sh-col_sh 0.4537879 -9.420060 10.327636 1.0000000
## duf_ro-col_sh -20.5145455 -30.849838 -10.179253 0.0000002
## duf_sh-col_sh -4.8000000 -14.886213 5.286213 0.8728478
## e_ro-col_sh -22.4645455 -32.799838 -12.129253 0.0000000
## e_sh-col_sh -4.6545455 -14.989838 5.680747 0.9055369
## w_ro-col_sh -22.3462121 -32.220060 -12.472364 0.0000000
## w_sh-col_sh -7.5128788 -17.386727 2.360969 0.3019960
## d_sh-d_ro 22.5166667 12.859853 32.173480 0.0000000
## duf_ro-d_ro 1.5483333 -8.579818 11.676485 0.9999703
## duf_sh-d_ro 17.2628788 7.389031 27.136727 0.0000062
## e_ro-d_ro -0.4016667 -10.529818 9.726485 1.0000000
## e_sh-d_ro 17.4083333 7.280182 27.536485 0.0000095
## w_ro-d_ro -0.2833333 -9.940147 9.373480 1.0000000
## w_sh-d_ro 14.5500000 4.893186 24.206814 0.0001690
## duf_ro-d_sh -20.9683333 -31.096485 -10.840182 0.0000001
## duf_sh-d_sh -5.2537879 -15.127636 4.620060 0.7808952
## e_ro-d_sh -22.9183333 -33.046485 -12.790182 0.0000000
## e_sh-d_sh -5.1083333 -15.236485 5.019818 0.8295241
## w_ro-d_sh -22.8000000 -32.456814 -13.143186 0.0000000
## w_sh-d_sh -7.9666667 -17.623480 1.690147 0.2007250
## duf_sh-duf_ro 15.7145455 5.379253 26.049838 0.0001412
## e_ro-duf_ro -1.9500000 -12.528509 8.628509 0.9998560
## e_sh-duf_ro 15.8600000 5.281491 26.438509 0.0001862
## w_ro-duf_ro -1.8316667 -11.959818 8.296485 0.9998772
## w_sh-duf_ro 13.0016667 2.873515 23.129818 0.0026484
## e_ro-duf_sh -17.6645455 -27.999838 -7.329253 0.0000108
## e_sh-duf_sh 0.1454545 -10.189838 10.480747 1.0000000
## w_ro-duf_sh -17.5462121 -27.420060 -7.672364 0.0000041
## w_sh-duf_sh -2.7128788 -12.586727 7.160969 0.9965099
## e_sh-e_ro 17.8100000 7.231491 28.388509 0.0000155
## w_ro-e_ro 0.1183333 -10.009818 10.246485 1.0000000
## w_sh-e_ro 14.9516667 4.823515 25.079818 0.0002508
## w_ro-e_sh -17.6916667 -27.819818 -7.563515 0.0000064
## w_sh-e_sh -2.8583333 -12.986485 7.269818 0.9957306
## w_sh-w_ro 14.8333333 5.176520 24.490147 0.0001150
P5 = Output$All.ID2[,'p adj']
stat.test<- multcompLetters(P5)
stat.test
## col_sh d_ro d_sh duf_ro duf_sh e_ro e_sh w_ro w_sh col_ro
## "a" "b" "a" "b" "a" "b" "a" "b" "a" "b"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
test$info <- strsplit(test$group1, "_")
test$info[[1]][2]
## [1] "sh"
#test$info[[1]][3]
test$Accession <- "none"
test$Tissue<- "none"
test
for(i in 1:nrow(test)){
test$Accession[i] <- test$info[[i]][1]
test$Tissue[i] <- test$info[[i]][2]
}
test2 <- test[,c(5:6,1)]
test2$group1 <- test2$Accession
test2$group2 <- test2$Accession
ICP_wd
ICP_wd7 <- subset(ICP_wd, ICP_wd$DW.mg < 40)
ICP_wd7$Accession <- factor(ICP_wd7$Accession, levels = c("col", "duf", "w", "d","e"))
DW_wd <- ggplot(data = ICP_wd7, mapping = aes(x = Accession, y = DW.mg, colour = Accession))
DW_wd <- DW_wd + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
DW_wd <- DW_wd + facet_grid(~Tissue , scales = "free_y")
DW_wd <- DW_wd + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
DW_wd <- DW_wd + scale_color_manual(values = c("blue", "plum", "rosybrown1", "hotpink","red"))
DW_wd <- DW_wd + ylab("Dry weight, mg") + xlab("")+stat_pvalue_manual(test2, label = "Tukey", y.position = 3)
DW_wd <- DW_wd + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
DW_wd <- DW_wd + rremove("legend")
DW_wd
library(cowplot)
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggpubr':
##
## get_legend
pdf("ICP-all.pdf", height = 3, width = 12)
plot_grid(Na_content_wd, k_content_wd, Nak_ratio_wd, ncol=3,
align = "hv", labels=c("AUTO"),
label_size = 24)
dev.off()
## png
## 2