library(pracma)
Find the equation of the regression line for the given points. The points given are (5.6, 8.8), (6.3, 12.4), (7, 14.8), (7.7, 18.2), (8.4, 20.8).
x <- c(5.6, 6.3, 7, 7.7, 8.4)
y <- c(8.8, 12.4, 14.8, 18.2, 20.8)
regression <- lm(y ~ x)
summary(regression)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## x 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
y=-14.8 +4.26x
Find all local maxima, minima, and saddle points for the function. The function is \(f(x, y) = 24x - 6xy^2 - 8y^3\). Write your answer(s) in the form ( x, y, z ). Separate multiple points with a comma.
df_dx_as_function_of_y <- function(y) {
24 - 6 * y^2
}
df_dy_as_function_of_x <- function(x, y_value) {
-12 * x * y_value - 24 * y_value^2
}
y_values <- c(2, -2)
x_values <- sapply(y_values, function(y) {
uniroot(df_dy_as_function_of_x, c(-10, 10), y_value = y)$root
})
critical_points <- cbind(x_values, y_values)
z_values <- sapply(1:nrow(critical_points), function(i) {
x <- critical_points[i, 1]
y <- critical_points[i, 2]
24*x - 6*x*y^2 - 8*y^3
})
critical_points_with_z <- cbind(critical_points, z_values)
print(critical_points_with_z)
## x_values y_values z_values
## x_values -4 2 -64
## x_values 4 -2 64
two critical points \((-4, 2, -64)\), \((4, -2, 64)\)
The second derivative test states that for a critical point \((x_0, y_0)\):
Compute the second partial derivatives:
Calculate \(D\) for each critical point:
Since \(D < 0\) for both critical points, they are both saddle points. There are no local maxima or minima.
A grocery store sells two brands of a product, the “house” brand and a “name” brand. The manager estimates that if she sells the “house” brand for x dollars and the “name” brand for y dollars, she will be able to sell 81- 21x + 17y units of the “house” brand and 40 + 11x - 23y units of the “name” brand.
Step 1: Find the revenue function \(R(x, y)\).
R <- function(x, y) { (81 - 21*x + 17*y)*x + (40 + 11*x - 23*y)*y }
\(R(x, y) = -21x^2+81x+28xy -23xy^2+40y\).
Step 2: What is the revenue if she sells the “house” brand for $2.30 and the “name” brand for $4.10?
revenue <- R(2.3, 4.1)
revenue
## [1] 116.62
A company has a plant in Los Angeles and a plant in Denver. The firm is committed to produce a total of 96 units of a product each week. The total weekly cost is given by \(c(x, y) =(1/6)*x^2 + (1/6)*y^2 + 7*x + 25*y + 700\), where x is the number of units produced in Los Angeles and y is the number of units produced in Denver.
How many units should be produced in each plant to minimize the total weekly cost?
total_units <- 96
C_single_var <- function(x) {
y <- total_units - x
(1/6)*x^2 + (1/6)*y^2 + 7*x + 25*y + 700
}
optim_result <- optim(48, C_single_var, method = "L-BFGS-B", lower = 0, upper = total_units)
x_optimal <- optim_result$par
y_optimal <- total_units - x_optimal
cat("Optimal production in Los Angeles (x):", x_optimal)
## Optimal production in Los Angeles (x): 75
cat("Optimal production in Denver (y):", y_optimal)
## Optimal production in Denver (y): 21
cat("Minimum total weekly cost:", optim_result$value)
## Minimum total weekly cost: 2761
Evaluate the double integral on the given region.
The region R: \[\iint_R (e^{8x+3y})dA;R:2\le x \le 4 and 2 \le y \le 4\].
Write your answer in exact form without decimals.
integrand <- function(x, y) { exp(8*x + 3*y) }
xmin <- 2
xmax <- 4
ymin <- 2
ymax <- 4
integral2(integrand,xmin,xmax, ymin, ymax)
## $Q
## [1] 5.341559e+17
##
## $error
## [1] 15214781905