1 0. data prep

2 descriptives

mean(d$education, na.rm = T)
## [1] 14.63202
sd(d$education, na.rm = T)
## [1] 2.622589
mean(d$CRT, na.rm = T)
## [1] 0.404966
sd(d$CRT, na.rm = T)
## [1] 0.3141821
corr.test(af$bias.af, af$bias.as)
## Call:corr.test(x = af$bias.af, y = af$bias.as)
## Correlation matrix 
## [1] 0.93
## Sample Size 
## [1] 23
## These are the unadjusted probability values.
##   The probability values  adjusted for multiple tests are in the p.adj object. 
## [1] 0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## visualize media bias.z
ggplot(data = af, aes(x = mediaOutlet, y = bias.z, fill = country)) + 
  ggtitle("media bias standardized") +
  geom_bar(stat = "identity", position = position_dodge()) + 
  geom_text(aes(label = mediaOutlet), vjust = 1.6, color = "black", position = position_dodge(0.9), size = 3) + 
  theme_minimal() + 
  coord_cartesian(ylim = c(-3, 3))
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_bar()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_text()`).

2.1 1. Spring 2022 Correlation Table (Table 1)

library(apaTables)

corr <- data.frame(d$vaxxIntent.w1w2.z)
colnames(corr)[colnames(corr) == "d.vaxxIntent.w1w2.z"] <- "vaxxIntentions"
corr$trustSci <- d$trustSci.z

corr$Age <- d$age.z
corr$Education <- d$education.z
corr$Ethnicity <- d$white_1
corr$Ideology <- d$ideology.z
corr$CRT <- d$crt.z

corr$CMC.2020 <- d$bias.mean.1.15.z
corr$CMC.2022 <- d$bias.mean.3.20.z

corr$VMC.2020 <- d$bias.sd.w1w2.15.z
corr$VMC.2022 <- d$bias.sd.3.20.z

# create APA table
apa.cor.table(
  corr,
  filename = "Table1.doc",
  table.number = 1,
  show.conf.interval = FALSE,
  show.sig.stars = TRUE,
  landscape = TRUE
)
## The ability to suppress reporting of reporting confidence intervals has been deprecated in this version.
## The function argument show.conf.interval will be removed in a later version.
## 
## 
## Table 1 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable          M     SD   1            2            3           
##   1. vaxxIntentions -0.00 1.00                                       
##                                                                      
##   2. trustSci       0.00  1.00 .40**                                 
##                                [.34, .45]                            
##                                                                      
##   3. Age            0.27  0.93 .17**        .06                      
##                                [.10, .23]   [-.00, .13]              
##                                                                      
##   4. Education      0.12  0.91 .07*         .13**        -.00        
##                                [.01, .13]   [.07, .19]   [-.07, .06] 
##                                                                      
##   5. Ideology       0.07  1.07 -.18**       -.45**       .13**       
##                                [-.24, -.11] [-.50, -.40] [.07, .19]  
##                                                                      
##   6. CRT            0.00  1.00 .10**        .14**        .03         
##                                [.04, .16]   [.08, .20]   [-.03, .10] 
##                                                                      
##   7. CMC.2020       0.00  1.00 -.21**       -.32**       .13**       
##                                [-.27, -.14] [-.38, -.26] [.07, .20]  
##                                                                      
##   8. CMC.2022       0.00  1.00 -.20**       -.51**       -.03        
##                                [-.26, -.13] [-.56, -.46] [-.09, .04] 
##                                                                      
##   9. VMC.2020       0.00  1.00 .23**        .09**        -.03        
##                                [.17, .29]   [.03, .15]   [-.09, .04] 
##                                                                      
##   10. VMC.2022      -0.00 1.00 .19**        -.03         -.10**      
##                                [.13, .25]   [-.09, .03]  [-.17, -.04]
##                                                                      
##   4            5            6            7            8            9         
##                                                                              
##                                                                              
##                                                                              
##                                                                              
##                                                                              
##                                                                              
##                                                                              
##                                                                              
##                                                                              
##                                                                              
##                                                                              
##   -.06                                                                       
##   [-.12, .00]                                                                
##                                                                              
##   .21**        .01                                                           
##   [.15, .27]   [-.06, .07]                                                   
##                                                                              
##   -.02         .49**        .14**                                            
##   [-.08, .04]  [.44, .54]   [.08, .21]                                       
##                                                                              
##   -.07*        .53**        .03          .66**                               
##   [-.13, -.00] [.48, .57]   [-.03, .09]  [.62, .69]                          
##                                                                              
##   -.02         -.08*        -.17**       -.48**       -.22**                 
##   [-.08, .04]  [-.14, -.02] [-.23, -.11] [-.52, -.43] [-.28, -.16]           
##                                                                              
##   -.04         -.10**       -.24**       -.42**       -.17**       .61**     
##   [-.10, .03]  [-.16, -.04] [-.30, -.18] [-.47, -.37] [-.23, -.11] [.56, .64]
##                                                                              
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 

2.2 2. Vaccination Behavior (Table 2A)

m.vaxx <- polr(vaxxBehavior ~ bias.mean.3.20.z * bias.sd.3.20.z + 
                 (bias.mean.3.20.z + bias.sd.3.20.z) * 
                 (crt.z + ideology.z + white_.5 + age.z + education.z), data = d, Hess = TRUE)

tab_model(m.vaxx,
          string.est = "OR",
          dv.labels = "Standardized Vaccination Behavior",
          pred.labels = c("1|2", 
                          "2|3", 
                          "Conservative Media Consumption (CMC)", 
                          "Variability in Media Consumption (VMC)",
                          "Cognitive Reflection (CRT)", 
                          "Ideology",
                          "Ethnicity",
                          "Age",
                          "Education",
                          "CMC x VMC",
                          "CMC x CRT",
                          "CMC x Ideology",
                          "CMC x Ethnicity",
                          "CMC x Age",
                          "CMC x Education",
                          "VMC x CRT",
                          "VMC x Ideology",
                          "VMC x Ethnicity",
                          "VMC x Age",
                          "VMC x Education"),
          show.stat = T,
          show.se = T,
          string.se = "SE",
          string.stat = "t",
          digits = 2)
  Standardized Vaccination Behavior
Predictors OR SE CI t p
1|2 0.20 0.02 0.15 – 0.25 -13.76 <0.001
2|3 0.55 0.06 0.45 – 0.68 -5.63 <0.001
Conservative Media Consumption (CMC) 0.52 0.07 0.40 – 0.66 -5.16 <0.001
Variability in Media Consumption (VMC) 1.53 0.16 1.26 – 1.88 4.19 <0.001
Cognitive Reflection (CRT) 1.22 0.11 1.03 – 1.45 2.28 0.023
Ideology 0.77 0.07 0.65 – 0.91 -3.03 0.003
Ethnicity 0.91 0.16 0.64 – 1.29 -0.50 0.617
Age 1.74 0.15 1.47 – 2.07 6.32 <0.001
Education 1.35 0.12 1.14 – 1.61 3.43 0.001
CMC x VMC 1.47 0.20 1.13 – 1.92 2.91 0.004
CMC x CRT 1.01 0.09 0.85 – 1.19 0.07 0.944
CMC x Ideology 0.93 0.08 0.79 – 1.10 -0.83 0.405
CMC x Ethnicity 0.82 0.17 0.55 – 1.22 -0.99 0.325
CMC x Age 0.92 0.09 0.76 – 1.12 -0.79 0.427
CMC x Education 0.95 0.10 0.78 – 1.16 -0.54 0.586
VMC x CRT 1.05 0.10 0.88 – 1.27 0.57 0.571
VMC x Ideology 1.10 0.09 0.94 – 1.29 1.15 0.249
VMC x Ethnicity 0.82 0.14 0.58 – 1.14 -1.18 0.237
VMC x Age 1.03 0.10 0.86 – 1.25 0.35 0.727
VMC x Education 0.93 0.07 0.80 – 1.07 -0.94 0.346
Observations 909
R2 Nagelkerke 0.416

2.2.1 - CMC x VMC

d$hi.variety <- d$bias.sd.3.20.z - 1
d$low.variety <- d$bias.sd.3.20.z + 1

m.low <- polr(vaxxBehavior ~ (bias.mean.3.20.z * low.variety)  +
               (bias.mean.3.20.z + low.variety) * 
               (crt.z + ideology.z + white_.5 + age.z + education.z), data = d, Hess = TRUE)


m.hi <- polr(vaxxBehavior ~ (bias.mean.3.20.z * hi.variety)  +
               (bias.mean.3.20.z + hi.variety) * 
               (crt.z + ideology.z + white_.5 + age.z + education.z), data = d, Hess = TRUE)


tab_model(m.low, m.vaxx, m.hi,
          string.est = "OR",
          title = "Outcome: Standardized Vaccination Behavior",
          dv.labels = c("Low Variety","Mean", "High Variety"),
          pred.labels = c("1|2", 
                          "2|3", 
                          "Conservative Media Consumption (CMC)", 
                          "Variability in Media Consumption (VMC)",
                          "Cognitive Reflection (CRT)", 
                          "Ideology",
                          "Ethnicity",
                          "Age",
                          "Education",
                          "CMC x VMC",
                          "CMC x CRT",
                          "CMC x Ideology",
                          "CMC x Ethnicity",
                          "CMC x Age",
                          "CMC x Education",
                          "VMC x CRT",
                          "VMC x Ideology",
                          "VMC x Ethnicity",
                          "VMC x Age",
                          "VMC x Education"),
          show.stat = T,
          show.se = T,
          string.se = "SE",
          string.stat = "t",
          digits = 2)
## Length of `pred.labels` does not equal number of predictors, no labelling applied.
Outcome: Standardized Vaccination Behavior
  Low Variety Mean High Variety
Predictors OR SE CI t p OR SE CI t p OR SE CI t p
1|2 0.30 0.04 0.23 – 0.39 -8.58 <0.001 0.20 0.02 0.15 – 0.25 -13.76 <0.001 0.13 0.02 0.09 – 0.18 -12.09 <0.001
2|3 0.85 0.11 0.65 – 1.10 -1.25 0.212 0.55 0.06 0.45 – 0.68 -5.63 <0.001 0.36 0.06 0.27 – 0.49 -6.46 <0.001
bias.mean.3.20.z 0.35 0.08 0.22 – 0.54 -4.65 <0.001 0.52 0.07 0.40 – 0.66 -5.16 <0.001 0.76 0.10 0.59 – 0.99 -2.04 0.042
low.variety 1.53 0.16 1.26 – 1.88 4.19 <0.001
crt.z 1.16 0.13 0.93 – 1.44 1.33 0.183 1.22 0.11 1.03 – 1.45 2.28 0.023 1.29 0.18 0.98 – 1.71 1.76 0.079
ideology.z 0.70 0.08 0.56 – 0.87 -3.14 0.002 0.77 0.07 0.65 – 0.91 -3.03 0.003 0.85 0.10 0.66 – 1.08 -1.35 0.178
white_.5 1.12 0.27 0.69 – 1.81 0.47 0.640 0.91 0.16 0.64 – 1.29 -0.50 0.617 0.75 0.19 0.45 – 1.21 -1.17 0.242
age.z 1.68 0.19 1.35 – 2.11 4.52 <0.001 1.74 0.15 1.47 – 2.07 6.32 <0.001 1.80 0.25 1.37 – 2.38 4.17 <0.001
education.z 1.45 0.18 1.14 – 1.87 2.93 0.004 1.35 0.12 1.14 – 1.61 3.43 0.001 1.26 0.13 1.02 – 1.53 2.27 0.023
bias.mean.3.20.z:low.variety 1.47 0.20 1.13 – 1.92 2.91 0.004
bias.mean.3.20.z:crt.z 1.01 0.09 0.85 – 1.19 0.07 0.944 1.01 0.09 0.85 – 1.19 0.07 0.944 1.01 0.09 0.85 – 1.19 0.07 0.944
bias.mean.3.20.z:ideology.z 0.93 0.08 0.79 – 1.10 -0.83 0.405 0.93 0.08 0.79 – 1.10 -0.83 0.405 0.93 0.08 0.79 – 1.10 -0.83 0.405
bias.mean.3.20.z:white_.5 0.82 0.17 0.55 – 1.22 -0.99 0.325 0.82 0.17 0.55 – 1.22 -0.99 0.325 0.82 0.17 0.55 – 1.22 -0.99 0.325
bias.mean.3.20.z:age.z 0.92 0.09 0.76 – 1.12 -0.79 0.427 0.92 0.09 0.76 – 1.12 -0.79 0.427 0.92 0.09 0.76 – 1.12 -0.79 0.427
bias.mean.3.20.z:education.z 0.95 0.10 0.78 – 1.16 -0.54 0.586 0.95 0.10 0.78 – 1.16 -0.54 0.586 0.95 0.10 0.78 – 1.16 -0.54 0.586
low.variety:crt.z 1.05 0.10 0.88 – 1.27 0.57 0.571
low.variety:ideology.z 1.10 0.09 0.94 – 1.29 1.15 0.249
low.variety:white_.5 0.82 0.14 0.58 – 1.14 -1.18 0.237
low.variety:age.z 1.03 0.10 0.86 – 1.25 0.35 0.727
low.variety:education.z 0.93 0.07 0.80 – 1.07 -0.94 0.346
bias.sd.3.20.z 1.53 0.16 1.26 – 1.88 4.19 <0.001
bias.mean.3.20.z:bias.sd.3.20.z 1.47 0.20 1.13 – 1.92 2.91 0.004
bias.sd.3.20.z:crt.z 1.05 0.10 0.88 – 1.27 0.57 0.571
bias.sd.3.20.z:ideology.z 1.10 0.09 0.94 – 1.29 1.15 0.249
bias.sd.3.20.z:white_.5 0.82 0.14 0.58 – 1.14 -1.18 0.237
bias.sd.3.20.z:age.z 1.03 0.10 0.86 – 1.25 0.35 0.727
bias.sd.3.20.z:education.z 0.93 0.07 0.80 – 1.07 -0.94 0.346
hi.variety 1.53 0.16 1.26 – 1.88 4.19 <0.001
bias.mean.3.20.z:hi.variety 1.47 0.20 1.13 – 1.92 2.91 0.004
hi.variety:crt.z 1.05 0.10 0.88 – 1.27 0.57 0.571
hi.variety:ideology.z 1.10 0.09 0.94 – 1.29 1.15 0.249
hi.variety:white_.5 0.82 0.14 0.58 – 1.14 -1.18 0.237
hi.variety:age.z 1.03 0.10 0.86 – 1.25 0.35 0.727
hi.variety:education.z 0.93 0.07 0.80 – 1.07 -0.94 0.346
Observations 909 909 909
R2 Nagelkerke 0.416 0.416 0.416
## just a model to help make sense of the CMC x VMC interaction!
d$vaxx.num <- as.numeric(d$vaxxBehavior)

m.test <- lm(vaxx.num ~ (bias.mean.3.20.z * bias.sd.3.20.z)  +
               (bias.mean.3.20.z + bias.sd.3.20.z) * 
               (crt.z + ideology.z + white_.5 + age.z + education.z), data = d)

interact_plot(m.test, bias.mean.3.20.z, bias.sd.3.20.z)

2.2.2 - Figure 1A

(Fig1A <- ggpredict(m.vaxx, terms = "bias.mean.3.20.z[-3, -2.5, -2, -1.5, -1, -.5, 0, .5, 1, 1.5, 2, 2.5, 3]") %>%
  ggplot(mapping = aes(x = x, y = predicted, colour = response.level, fill = response.level)) +
  geom_line(size = 1) + 
  scale_x_continuous(limits = c(-2, 2), breaks = c(-3:3)) +
  scale_y_continuous(limits = c(0, 1), breaks = c(0, .1,.2,.3,.4,.5, .6, .7, .8, .9, 1)) +
  labs(title = "Predicted Probabilities for Vaccination Behaviors",
       x = "Standardized Conservative Media Consumption",
       y = "Predicted Probability for Vaccination Behavior Choice") +
  theme_minimal() +
  theme(plot.title = element_text(size = 12)) + labs(colour = "Vaccination Behavior") +
  geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.2, colour = NA))
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Removed 12 rows containing missing values or values outside the scale range
## (`geom_line()`).

2.2.3 - Figure 1B

(Fig1B <- ggpredict(m.vaxx, terms = "bias.sd.3.20.z[-3, -2.5, -2, -1.5, -1, -.5, 0, .5, 1, 1.5, 2, 2.5, 3]") %>%
  ggplot(mapping = aes(x = x, y = predicted, colour = response.level, fill = response.level)) +
  geom_line(size = 1) + 
  scale_x_continuous(limits = c(-2, 2), breaks = c(-3:3)) +
  scale_y_continuous(limits = c(0, 1), breaks = c(0, .1,.2,.3,.4,.5, .6, .7, .8, .9, 1)) +
  labs(title = "Predicted Probabilities for Vaccination Behaviors",
       x = "Standardized Variability in Media Consumption",
       y = "Predicted Probability for Vaccination Behavior Choice") +
  theme_minimal() +
  theme(plot.title = element_text(size = 12)) + labs(colour = "Vaccination Behavior") +
  geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.2, colour = NA))
## Warning: Removed 12 rows containing missing values or values outside the scale range
## (`geom_line()`).

2.3 3. Trust in Science (Table 2B)

m2.med <- lm(trustSci.z ~ (bias.mean.3.20.z * bias.sd.3.20.z)  +
               (bias.mean.3.20.z + bias.sd.3.20.z) * 
               (crt.z + ideology.z + white_.5 + age.z + education.z), data = d)

tab_model(m2.med,
          string.est = "Est",
          dv.labels = "Standardized Trust in Science",
          pred.labels = c("Intercept", 
                          "Conservative Media Consumption (CMC)", 
                          "Variability in Media Consumption (VMC)",
                          "Cognitive Reflection (CRT)", 
                          "Ideology",
                          "Ethnicity",
                          "Age",
                          "Education",
                          
                          "CMC x VMC",
                          "CMC x CRT",
                          "CMC x Ideology",
                          "CMC x Ethnicity",
                          "CMC x Age",
                          "CMC x Education",
                          
                          "VMC x CRT",
                          "VMC x Ideology",
                          "VMC x Ethnicity",
                          "VMC x Age",
                          "VMC x Education"),
          show.stat = T,
          show.se = T,
          string.se = "SE",
          string.stat = "t",
          digits = 2)
  Standardized Trust in Science
Predictors Est SE CI t p
Intercept 0.02 0.04 -0.05 – 0.09 0.64 0.521
Conservative Media Consumption (CMC) -0.53 0.04 -0.62 – -0.44 -11.94 <0.001
Variability in Media Consumption (VMC) -0.07 0.03 -0.14 – -0.01 -2.15 0.032
Cognitive Reflection (CRT) 0.10 0.03 0.04 – 0.16 3.40 0.001
Ideology -0.23 0.03 -0.28 – -0.17 -7.49 <0.001
Ethnicity 0.19 0.06 0.07 – 0.32 3.05 0.002
Age 0.07 0.03 0.01 – 0.13 2.33 0.020
Education 0.06 0.03 -0.00 – 0.12 1.89 0.059
CMC x VMC 0.21 0.04 0.12 – 0.30 4.76 <0.001
CMC x CRT -0.01 0.03 -0.07 – 0.04 -0.46 0.646
CMC x Ideology -0.01 0.03 -0.06 – 0.04 -0.43 0.668
CMC x Ethnicity -0.08 0.06 -0.20 – 0.05 -1.23 0.218
CMC x Age 0.06 0.03 -0.00 – 0.12 1.93 0.054
CMC x Education 0.02 0.04 -0.05 – 0.09 0.66 0.508
VMC x CRT 0.03 0.03 -0.04 – 0.09 0.85 0.396
VMC x Ideology 0.05 0.03 -0.00 – 0.11 1.81 0.070
VMC x Ethnicity -0.08 0.06 -0.20 – 0.04 -1.33 0.182
VMC x Age 0.10 0.03 0.04 – 0.16 3.17 0.002
VMC x Education -0.04 0.02 -0.09 – 0.00 -1.77 0.077
Observations 908
R2 / R2 adjusted 0.396 / 0.383
round(etaSquared(m2.med),3)
##                                 eta.sq eta.sq.part
## bias.mean.3.20.z                 0.112       0.156
## bias.sd.3.20.z                   0.003       0.005
## crt.z                            0.007       0.012
## ideology.z                       0.038       0.060
## white_.5                         0.007       0.011
## age.z                            0.003       0.005
## education.z                      0.002       0.003
## bias.mean.3.20.z:bias.sd.3.20.z  0.015       0.025
## bias.mean.3.20.z:crt.z           0.000       0.000
## bias.mean.3.20.z:ideology.z      0.000       0.000
## bias.mean.3.20.z:white_.5        0.001       0.002
## bias.mean.3.20.z:age.z           0.003       0.004
## bias.mean.3.20.z:education.z     0.000       0.000
## bias.sd.3.20.z:crt.z             0.000       0.001
## bias.sd.3.20.z:ideology.z        0.002       0.004
## bias.sd.3.20.z:white_.5          0.001       0.002
## bias.sd.3.20.z:age.z             0.007       0.011
## bias.sd.3.20.z:education.z       0.002       0.004

2.3.1 - VMC x CMC

m2.low <- lm(trustSci.z ~ (bias.mean.3.20.z * low.variety)  +
               (bias.mean.3.20.z + low.variety) * 
               (crt.z + ideology.z + white_.5 + age.z + education.z), data = d)

m2.hi <- lm(trustSci.z ~ (bias.mean.3.20.z * hi.variety)  +
               (bias.mean.3.20.z + hi.variety) * 
               (crt.z + ideology.z + white_.5 + age.z + education.z), data = d)

tab_model(m2.low, m2.hi,
          string.est = "Est",
          dv.labels = "Standardized Trust in Science",
          pred.labels = c("Intercept", 
                          "Conservative Media Consumption (CMC)", 
                          "Variability in Media Consumption (VMC)",
                          "Cognitive Reflection (CRT)", 
                          "Ideology",
                          "Ethnicity",
                          "Age",
                          "Education",
                          
                          "CMC x VMC",
                          "CMC x CRT",
                          "CMC x Ideology",
                          "CMC x Ethnicity",
                          "CMC x Age",
                          "CMC x Education",
                          
                          "VMC x CRT",
                          "VMC x Ideology",
                          "VMC x Ethnicity",
                          "VMC x Age",
                          "VMC x Education"),
          show.stat = T,
          show.se = T,
          string.se = "SE",
          string.stat = "t",
          digits = 2)
## Length of `pred.labels` does not equal number of predictors, no labelling applied.
  Standardized Trust in Science
Predictors Est SE CI t p Est SE CI t p
(Intercept) 0.09 0.05 0.00 – 0.19 1.99 0.047 -0.05 0.05 -0.15 – 0.05 -0.96 0.339
bias.mean.3.20.z -0.74 0.08 -0.89 – -0.59 -9.63 <0.001 -0.32 0.04 -0.41 – -0.23 -7.27 <0.001
low.variety -0.07 0.03 -0.14 – -0.01 -2.15 0.032
crt.z 0.07 0.04 -0.01 – 0.15 1.80 0.073 0.13 0.05 0.04 – 0.22 2.73 0.006
ideology.z -0.28 0.04 -0.36 – -0.20 -6.76 <0.001 -0.17 0.04 -0.26 – -0.09 -4.24 <0.001
white_.5 0.27 0.09 0.10 – 0.45 3.05 0.002 0.11 0.08 -0.05 – 0.28 1.35 0.176
age.z -0.03 0.04 -0.11 – 0.05 -0.71 0.478 0.17 0.04 0.08 – 0.26 3.74 <0.001
education.z 0.10 0.04 0.02 – 0.19 2.33 0.020 0.02 0.04 -0.05 – 0.08 0.44 0.658
bias.mean.3.20.z:low.variety 0.21 0.04 0.12 – 0.30 4.76 <0.001
bias.mean.3.20.z:crt.z -0.01 0.03 -0.07 – 0.04 -0.46 0.646 -0.01 0.03 -0.07 – 0.04 -0.46 0.646
bias.mean.3.20.z:ideology.z -0.01 0.03 -0.06 – 0.04 -0.43 0.668 -0.01 0.03 -0.06 – 0.04 -0.43 0.668
bias.mean.3.20.z:white_.5 -0.08 0.06 -0.20 – 0.05 -1.23 0.218 -0.08 0.06 -0.20 – 0.05 -1.23 0.218
bias.mean.3.20.z:age.z 0.06 0.03 -0.00 – 0.12 1.93 0.054 0.06 0.03 -0.00 – 0.12 1.93 0.054
bias.mean.3.20.z:education.z 0.02 0.04 -0.05 – 0.09 0.66 0.508 0.02 0.04 -0.05 – 0.09 0.66 0.508
low.variety:crt.z 0.03 0.03 -0.04 – 0.09 0.85 0.396
low.variety:ideology.z 0.05 0.03 -0.00 – 0.11 1.81 0.070
low.variety:white_.5 -0.08 0.06 -0.20 – 0.04 -1.33 0.182
low.variety:age.z 0.10 0.03 0.04 – 0.16 3.17 0.002
low.variety:education.z -0.04 0.02 -0.09 – 0.00 -1.77 0.077
hi.variety -0.07 0.03 -0.14 – -0.01 -2.15 0.032
bias.mean.3.20.z:hi.variety 0.21 0.04 0.12 – 0.30 4.76 <0.001
hi.variety:crt.z 0.03 0.03 -0.04 – 0.09 0.85 0.396
hi.variety:ideology.z 0.05 0.03 -0.00 – 0.11 1.81 0.070
hi.variety:white_.5 -0.08 0.06 -0.20 – 0.04 -1.33 0.182
hi.variety:age.z 0.10 0.03 0.04 – 0.16 3.17 0.002
hi.variety:education.z -0.04 0.02 -0.09 – 0.00 -1.77 0.077
Observations 908 908
R2 / R2 adjusted 0.396 / 0.383 0.396 / 0.383

2.3.2 - Figure 2

#create plot
(p2 <- plot_model(m2.med, type = "pred", terms = c("bias.mean.3.20.z", "bias.sd.3.20.z [-1, 0, 1]")) +
    ggtitle("") + 
    ylab("") +
    xlab("Conservative Media Consumption") +
    xlim(-2, 2) +
    ylim(-3, 2) +
    theme(panel.grid.major = element_blank(), 
          panel.grid.minor = element_blank(),
          panel.background = element_blank(), 
          axis.line = element_line(colour = "black"),
          legend.position = c(0.8, 0.8), 
          legend.background = element_rect(fill = "white", color = "white"),
          legend.title = element_blank()) + 
  scale_color_manual( labels = c("Low (-1 SD)", "Mean", "High (+1 SD)"), 
                       values = c("blue", "purple", "red")) +

  scale_fill_manual(values = c("blue", "purple", "red")) +
  
  scale_y_continuous(breaks = c(-2.993, -1.775, -0.558, 0.660, 1.878), 
                    limits = c(-3.193, 2.2),
                    labels = c("Strongly distrust", 
                                "Moderately distrust",
                                "Neither trust nor distrust",
                                "Moderately trust",
                                "Strongly trust"))
)
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: A numeric `legend.position` argument in `theme()` was deprecated in ggplot2
## 3.5.0.
## ℹ Please use the `legend.position.inside` argument of `theme()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_line()`).

2.4 4. Long - Vaccination Behavior (Table 3)

m.vaxx.long <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) + 
                         (bias.mean.w1w2.15.z * bias.sd.w1w2.15.z) + 
                         (bias.mean.3.20.z + bias.sd.3.20.z + bias.mean.w1w2.15.z + bias.sd.w1w2.15.z) * 
                         (crt.z + ideology.z + white_.5 + age.z + education.z) +
                         vaxxIntent.w1w2.z, 
                     data = d, Hess = TRUE)

tab_model(m.vaxx.long,
          string.est = "OR",
          dv.labels = "Standardized Vaccination Behavior",
          pred.labels = c("1|2", 
                          "2|3", 
                          "Conservative Media Consumption 2022 (CMC 2022)", 
                          "Variability in Media Consumption 2022 (VMC 2022)",
                          "Conservative Media Consumption 2020 (CMC 2020)",
                          "Variability in Media Consumption 2020 (VMC 2020)",
                          
                          "Cognitive Reflection (CRT)", 
                          "Ideology",
                          "Ethnicity",
                          "Age",
                          "Education",
                          
                          "Vaccination Intention 2020",
                          
                          "CMC 2022 x VMC22",
                          "CMC 2020 x VMC20",
                          
                          "CMC 2022 x CRT",
                          "CMC 2022 x Ideology",
                          "CMC 2022 x Ethnicity",
                          "CMC 2022 x Age",
                          "CMC 2022 x Education",
                          
                          "VMC 2022 x CRT",
                          "VMC 2022 x Ideology",
                          "VMC 2022 x Ethnicity",
                          "VMC 2022 x Age",
                          "VMC 2022 x Education",
                          
                          "CMC 2020 x CRT",
                          "CMC 2020 x Ideology",
                          "CMC 2020 x Ethnicity",
                          "CMC 2020 x Age",
                          "CMC 2020 x Education",
                          
                          "VMC 2020 x CRT",
                          "VMC 2020 x Ideology",
                          "VMC 2020 x Ethnicity",
                          "VMC 2020 x Age",
                          "VMC 2020 x Education"),
          show.stat = T,
          show.se = T,
          string.se = "SE",
          string.stat = "t",
          digits = 2)
  Standardized Vaccination Behavior
Predictors OR SE CI t p
1|2 0.11 0.02 0.08 – 0.15 -14.28 <0.001
2|3 0.44 0.06 0.34 – 0.56 -6.38 <0.001
Conservative Media Consumption 2022 (CMC 2022) 0.56 0.10 0.39 – 0.78 -3.34 0.001
Variability in Media Consumption 2022 (VMC 2022) 1.52 0.21 1.16 – 2.00 3.01 0.003
Conservative Media Consumption 2020 (CMC 2020) 0.89 0.18 0.60 – 1.32 -0.59 0.552
Variability in Media Consumption 2020 (VMC 2020) 0.78 0.11 0.59 – 1.02 -1.78 0.076
Cognitive Reflection (CRT) 1.07 0.10 0.89 – 1.30 0.74 0.460
Ideology 0.83 0.08 0.68 – 1.00 -1.97 0.049
Ethnicity 0.79 0.16 0.54 – 1.16 -1.19 0.234
Age 1.55 0.15 1.28 – 1.87 4.50 <0.001
Education 1.35 0.13 1.12 – 1.62 3.14 0.002
Vaccination Intention 2020 3.02 0.27 2.53 – 3.62 12.13 <0.001
CMC 2022 x VMC22 1.29 0.20 0.94 – 1.75 1.60 0.111
CMC 2020 x VMC20 1.39 0.15 1.13 – 1.71 3.14 0.002
CMC 2022 x CRT 0.85 0.11 0.65 – 1.10 -1.27 0.206
CMC 2022 x Ideology 0.97 0.12 0.75 – 1.25 -0.27 0.785
CMC 2022 x Ethnicity 1.60 0.48 0.89 – 2.88 1.58 0.115
CMC 2022 x Age 0.67 0.10 0.50 – 0.89 -2.76 0.006
CMC 2022 x Education 0.99 0.15 0.75 – 1.33 -0.05 0.957
VMC 2022 x CRT 1.06 0.13 0.83 – 1.36 0.46 0.647
VMC 2022 x Ideology 0.83 0.10 0.64 – 1.06 -1.51 0.130
VMC 2022 x Ethnicity 0.84 0.20 0.52 – 1.34 -0.74 0.462
VMC 2022 x Age 1.04 0.13 0.81 – 1.35 0.34 0.736
VMC 2022 x Education 0.88 0.11 0.69 – 1.11 -1.03 0.305
CMC 2020 x CRT 1.35 0.21 1.00 – 1.82 1.97 0.049
CMC 2020 x Ideology 1.02 0.15 0.77 – 1.35 0.12 0.902
CMC 2020 x Ethnicity 0.44 0.15 0.22 – 0.86 -2.39 0.017
CMC 2020 x Age 1.20 0.18 0.89 – 1.63 1.22 0.225
CMC 2020 x Education 0.90 0.14 0.66 – 1.23 -0.64 0.524
VMC 2020 x CRT 1.12 0.13 0.90 – 1.41 1.02 0.310
VMC 2020 x Ideology 1.35 0.16 1.08 – 1.71 2.57 0.010
VMC 2020 x Ethnicity 0.54 0.15 0.31 – 0.91 -2.30 0.022
VMC 2020 x Age 1.09 0.13 0.87 – 1.39 0.75 0.454
VMC 2020 x Education 0.99 0.12 0.79 – 1.25 -0.04 0.966
Observations 909
R2 Nagelkerke 0.570

2.5 5. Robustness checks - correlation table

d$vaxxBehavior.num <- as.numeric(d$vaxxBehavior)
corr <- data.frame(d$vaxxBehavior.num)
names(corr)
## [1] "d.vaxxBehavior.num"
colnames(corr)[colnames(corr) == "d.vaxxBehavior.num"] <- "vaxxBehavior"
corr$trustSci <- d$trustSci

corr$analytic <- d$analytic.mean.3.12
corr$affect <- d$affect.mean.3.12
corr$threat <- d$threat.mean.3.12
corr$negEmo <- d$negEmo.mean.3.12
corr$posEmo <- d$posEmo.mean.3.12
corr$clout <- d$clout.mean.3.12
corr$reliab <- d$rel.mean.3.19

corr$cons.media <- d$bias.mean.3.20
corr$variety <- d$bias.sd.3.20


corr2 <- corr_coef(corr, use = "pairwise.complete.obs")
## Warning: Missing values in the data. Option 'pairwise.complete.obs' used to
## compute correlation with all complete pairs of observations.
plot(corr2)

# to report in manuscript
cor.test(d$bias.mean.3.20, d$negEmo.mean.3.12)
## 
##  Pearson's product-moment correlation
## 
## data:  d$bias.mean.3.20 and d$negEmo.mean.3.12
## t = -8.523, df = 990, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.3185147 -0.2025084
## sample estimates:
##        cor 
## -0.2614555
cor.test(d$bias.mean.3.20, d$posEmo.mean.3.12)
## 
##  Pearson's product-moment correlation
## 
## data:  d$bias.mean.3.20 and d$posEmo.mean.3.12
## t = -3.399, df = 990, p-value = 0.0007032
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.16852006 -0.04546525
## sample estimates:
##       cor 
## -0.107404
cor.test(d$bias.mean.3.20, d$clout.mean.3.12)
## 
##  Pearson's product-moment correlation
## 
## data:  d$bias.mean.3.20 and d$clout.mean.3.12
## t = -12.04, df = 990, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.4105061 -0.3018677
## sample estimates:
##        cor 
## -0.3573952
cor.test(d$bias.mean.3.20, d$analytic.mean.3.12)
## 
##  Pearson's product-moment correlation
## 
## data:  d$bias.mean.3.20 and d$analytic.mean.3.12
## t = -2.0947, df = 990, p-value = 0.03645
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.128139455 -0.004201302
## sample estimates:
##         cor 
## -0.06642659
cor.test(d$bias.mean.3.20, d$rel.mean.3.19)
## 
##  Pearson's product-moment correlation
## 
## data:  d$bias.mean.3.20 and d$rel.mean.3.19
## t = -51.316, df = 990, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.8686583 -0.8345493
## sample estimates:
##        cor 
## -0.8525088
cor.test(d$bias.sd.3.20, d$rel.mean.3.19)
## 
##  Pearson's product-moment correlation
## 
## data:  d$bias.sd.3.20 and d$rel.mean.3.19
## t = 2.7017, df = 990, p-value = 0.007017
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.02343212 0.14700987
## sample estimates:
##        cor 
## 0.08555001

2.6 6. Robust check - Vaccination behavior (Supplemental Table 3)

m.analytic <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) + 
                         (bias.mean.3.20.z * analytic.mean.3.12.z) + 
                         (bias.sd.3.20.z * analytic.mean.3.12.z) +
                         (bias.mean.3.20.z + bias.sd.3.20.z + analytic.mean.3.12.z) * 
                         (crt.z + ideology.z + white_.5 + age.z + education.z), 
                     data = d, Hess = TRUE)

m.threat <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) + 
                         (bias.mean.3.20.z * threat.mean.3.12.z) + 
                         (threat.mean.3.12.z * bias.sd.3.20.z) +
                         (bias.mean.3.20.z + bias.sd.3.20.z + threat.mean.3.12.z) * 
                         (crt.z + ideology.z + white_.5 + age.z + education.z), 
                     data = d, Hess = TRUE)

m.posEmo <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) + 
                         (bias.mean.3.20.z * posEmo.mean.3.12.z) + 
                         (posEmo.mean.3.12.z * bias.sd.3.20.z) +
                         (bias.mean.3.20.z + bias.sd.3.20.z + posEmo.mean.3.12.z) * 
                         (crt.z + ideology.z + white_.5 + age.z + education.z), 
                     data = d, Hess = TRUE)

m.negEmo <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) + 
                         (bias.mean.3.20.z * negEmo.mean.3.12.z) + 
                         (negEmo.mean.3.12.z * bias.sd.3.20.z) +
                         (bias.mean.3.20.z + bias.sd.3.20.z + negEmo.mean.3.12.z) * 
                         (crt.z + ideology.z + white_.5 + age.z + education.z), 
                     data = d, Hess = TRUE)

m.affect <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) + 
                         (bias.mean.3.20.z * affect.mean.3.12.z) + 
                         (affect.mean.3.12.z * bias.sd.3.20.z) +
                         (bias.mean.3.20.z + bias.sd.3.20.z + affect.mean.3.12.z) * 
                         (crt.z + ideology.z + white_.5 + age.z + education.z), 
                     data = d, Hess = TRUE)

m.clout <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) + 
                         (bias.mean.3.20.z * clout.mean.3.12.z) + 
                         (clout.mean.3.12.z * bias.sd.3.20.z) +
                         (bias.mean.3.20.z + bias.sd.3.20.z + clout.mean.3.12.z) * 
                         (crt.z + ideology.z + white_.5 + age.z + education.z), 
                     data = d, Hess = TRUE)

m.authentic <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) + 
                         (bias.mean.3.20.z * authentic.mean.3.12.z) + 
                         (authentic.mean.3.12.z * bias.sd.3.20.z) +
                         (bias.mean.3.20.z + bias.sd.3.20.z + authentic.mean.3.12.z) * 
                         (crt.z + ideology.z + white_.5 + age.z + education.z), 
                     data = d, Hess = TRUE)

m.reliability <- polr(vaxxBehavior ~ (bias.mean.3.20.z * bias.sd.3.20.z) + 
                         (bias.mean.3.20.z * rel.mean.3.19.z) + 
                         (rel.mean.3.19.z * bias.sd.3.20.z) +
                         (bias.mean.3.20.z + bias.sd.3.20.z + rel.mean.3.19.z) * 
                         (crt.z + ideology.z + white_.5 + age.z + education.z), 
                     data = d, Hess = TRUE)

tab_model(m.affect, m.analytic, m.authentic, m.clout, m.posEmo, m.negEmo, m.threat, m.reliability,
          dv.labels = c("affect", "analytic", "authentic", "clout", 
                        "positive emotion", "negative emotion", "threat", "reliability"),
          title = "Outcome: Vaccination Behavior",
          pred.labels = c("Intercept"), 
          string.est = "Est",
          show.stat = F,
          show.se = F,
          show.ci = F,
          string.stat = "t",
          digits = 2)
## Length of `pred.labels` does not equal number of predictors, no labelling applied.
Outcome: Vaccination Behavior
  affect analytic authentic clout positive emotion negative emotion threat reliability
Predictors Est p Est p Est p Est p Est p Est p Est p Est p
1|2 0.19 <0.001 0.20 <0.001 0.19 <0.001 0.20 <0.001 0.19 <0.001 0.19 <0.001 0.20 <0.001 0.19 <0.001
2|3 0.55 <0.001 0.57 <0.001 0.55 <0.001 0.57 <0.001 0.56 <0.001 0.55 <0.001 0.57 <0.001 0.54 <0.001
bias.mean.3.20.z 0.50 <0.001 0.51 <0.001 0.52 <0.001 0.52 <0.001 0.51 <0.001 0.50 <0.001 0.50 <0.001 0.73 0.122
bias.sd.3.20.z 1.56 <0.001 1.47 0.001 1.53 <0.001 1.54 <0.001 1.50 <0.001 1.57 <0.001 1.55 <0.001 1.63 <0.001
affect.mean.3.12.z 0.92 0.427
crt.z 1.24 0.016 1.24 0.014 1.23 0.020 1.24 0.014 1.24 0.013 1.23 0.020 1.23 0.017 1.23 0.019
ideology.z 0.77 0.003 0.76 0.002 0.76 0.001 0.76 0.002 0.77 0.003 0.76 0.002 0.77 0.002 0.76 0.002
white_.5 0.94 0.728 0.90 0.565 0.93 0.701 0.92 0.655 0.93 0.663 0.94 0.710 0.94 0.722 0.91 0.590
age.z 1.77 <0.001 1.77 <0.001 1.76 <0.001 1.77 <0.001 1.78 <0.001 1.77 <0.001 1.75 <0.001 1.75 <0.001
education.z 1.35 0.001 1.36 0.001 1.36 0.001 1.36 0.001 1.36 0.001 1.35 0.001 1.35 0.001 1.35 0.001
bias.mean.3.20.z:bias.sd.3.20.z 1.53 0.002 1.48 0.005 1.45 0.010 1.48 0.006 1.53 0.002 1.53 0.002 1.45 0.008 1.93 0.008
bias.mean.3.20.z:affect.mean.3.12.z 1.14 0.170
bias.sd.3.20.z:affect.mean.3.12.z 1.03 0.798
bias.mean.3.20.z:crt.z 1.04 0.703 1.03 0.721 1.02 0.822 1.03 0.779 1.05 0.596 1.01 0.890 1.02 0.804 1.07 0.714
bias.mean.3.20.z:ideology.z 0.90 0.253 0.90 0.249 0.88 0.187 0.93 0.416 0.90 0.221 0.91 0.311 0.92 0.324 1.06 0.736
bias.mean.3.20.z:white_.5 0.84 0.418 0.80 0.288 0.94 0.796 0.81 0.343 0.80 0.284 0.87 0.516 0.82 0.331 0.80 0.540
bias.mean.3.20.z:age.z 0.98 0.833 0.87 0.186 0.95 0.652 0.99 0.919 0.95 0.619 0.97 0.787 0.90 0.291 1.03 0.859
bias.mean.3.20.z:education.z 0.94 0.561 0.94 0.544 0.91 0.403 0.94 0.573 0.95 0.648 0.93 0.549 0.92 0.423 1.05 0.789
bias.sd.3.20.z:crt.z 1.07 0.490 1.05 0.593 1.05 0.577 1.05 0.574 1.07 0.489 1.06 0.520 1.07 0.478 1.05 0.604
bias.sd.3.20.z:ideology.z 1.08 0.339 1.08 0.328 1.07 0.389 1.08 0.323 1.08 0.342 1.09 0.316 1.08 0.365 1.10 0.265
bias.sd.3.20.z:white_.5 0.82 0.261 0.82 0.245 0.85 0.350 0.81 0.239 0.82 0.251 0.82 0.244 0.81 0.233 0.80 0.215
bias.sd.3.20.z:age.z 1.06 0.525 0.97 0.782 1.06 0.538 1.03 0.747 1.06 0.556 1.06 0.565 0.98 0.807 1.06 0.546
bias.sd.3.20.z:education.z 0.93 0.313 0.93 0.331 0.92 0.287 0.93 0.339 0.93 0.305 0.93 0.310 0.92 0.294 0.95 0.506
affect.mean.3.12.z:crt.z 0.99 0.872
affect.mean.3.12.z:ideology.z 0.89 0.177
affect.mean.3.12.z:white_.5 1.20 0.348
affect.mean.3.12.z:age.z 1.25 0.019
affect.mean.3.12.z:education.z 0.94 0.552
analytic.mean.3.12.z 1.03 0.780
bias.mean.3.20.z:analytic.mean.3.12.z 0.88 0.162
bias.sd.3.20.z:analytic.mean.3.12.z 0.98 0.868
analytic.mean.3.12.z:crt.z 1.00 0.972
analytic.mean.3.12.z:ideology.z 1.03 0.736
analytic.mean.3.12.z:white_.5 1.03 0.869
analytic.mean.3.12.z:age.z 0.76 0.005
analytic.mean.3.12.z:education.z 1.04 0.677
authentic.mean.3.12.z 0.99 0.942
bias.mean.3.20.z:authentic.mean.3.12.z 0.96 0.569
bias.sd.3.20.z:authentic.mean.3.12.z 1.07 0.564
authentic.mean.3.12.z:crt.z 0.98 0.830
authentic.mean.3.12.z:ideology.z 1.13 0.195
authentic.mean.3.12.z:white_.5 0.83 0.390
authentic.mean.3.12.z:age.z 0.94 0.581
authentic.mean.3.12.z:education.z 1.12 0.374
clout.mean.3.12.z 1.00 0.967
bias.mean.3.20.z:clout.mean.3.12.z 1.09 0.343
bias.sd.3.20.z:clout.mean.3.12.z 1.03 0.814
clout.mean.3.12.z:crt.z 0.99 0.937
clout.mean.3.12.z:ideology.z 0.96 0.663
clout.mean.3.12.z:white_.5 1.03 0.888
clout.mean.3.12.z:age.z 1.28 0.023
clout.mean.3.12.z:education.z 0.98 0.845
posEmo.mean.3.12.z 0.94 0.552
bias.mean.3.20.z:posEmo.mean.3.12.z 1.17 0.080
bias.sd.3.20.z:posEmo.mean.3.12.z 0.95 0.618
posEmo.mean.3.12.z:crt.z 1.01 0.896
posEmo.mean.3.12.z:ideology.z 0.90 0.191
posEmo.mean.3.12.z:white_.5 1.08 0.667
posEmo.mean.3.12.z:age.z 1.28 0.010
posEmo.mean.3.12.z:education.z 0.93 0.407
negEmo.mean.3.12.z 0.93 0.455
bias.mean.3.20.z:negEmo.mean.3.12.z 1.09 0.389
bias.sd.3.20.z:negEmo.mean.3.12.z 1.10 0.413
negEmo.mean.3.12.z:crt.z 0.96 0.659
negEmo.mean.3.12.z:ideology.z 0.89 0.207
negEmo.mean.3.12.z:white_.5 1.26 0.239
negEmo.mean.3.12.z:age.z 1.20 0.053
negEmo.mean.3.12.z:education.z 0.97 0.795
threat.mean.3.12.z 1.06 0.571
bias.mean.3.20.z:threat.mean.3.12.z 0.89 0.220
bias.sd.3.20.z:threat.mean.3.12.z 0.88 0.246
threat.mean.3.12.z:crt.z 1.07 0.433
threat.mean.3.12.z:ideology.z 1.02 0.834
threat.mean.3.12.z:white_.5 0.97 0.872
threat.mean.3.12.z:age.z 0.76 0.003
threat.mean.3.12.z:education.z 0.99 0.884
rel.mean.3.19.z 1.50 0.036
bias.mean.3.20.z:rel.mean.3.19.z 1.03 0.711
bias.sd.3.20.z:rel.mean.3.19.z 1.38 0.164
rel.mean.3.19.z:crt.z 1.09 0.640
rel.mean.3.19.z:ideology.z 1.12 0.518
rel.mean.3.19.z:white_.5 0.90 0.771
rel.mean.3.19.z:age.z 1.12 0.529
rel.mean.3.19.z:education.z 1.12 0.518
Observations 909 909 909 909 909 909 909 909
R2 Nagelkerke 0.424 0.424 0.420 0.421 0.426 0.421 0.425 0.425

2.7 7. US vs. UK Samples

cor.test(dUK$ideology.z, dUK$bias.sd.z)
## 
##  Pearson's product-moment correlation
## 
## data:  dUK$ideology.z and dUK$bias.sd.z
## t = 0.67006, df = 1500, p-value = 0.5029
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.03331049  0.06781878
## sample estimates:
##        cor 
## 0.01729839
cor.test(dUK$vaxxIntentions.z, dUK$bias.sd.z)
## 
##  Pearson's product-moment correlation
## 
## data:  dUK$vaxxIntentions.z and dUK$bias.sd.z
## t = 2.0983, df = 1500, p-value = 0.03605
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.003527728 0.104391894
## sample estimates:
##        cor 
## 0.05409781
cor.test(dUK$vaxxIntentions.z, dUK$bias.mean.z)
## 
##  Pearson's product-moment correlation
## 
## data:  dUK$vaxxIntentions.z and dUK$bias.mean.z
## t = -4.7414, df = 1500, p-value = 2.324e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.17104469 -0.07137521
## sample estimates:
##        cor 
## -0.1215162
mean(as.numeric(dUK$age), na.rm = T) #35.35
## Warning in mean(as.numeric(dUK$age), na.rm = T): NAs introduced by coercion
## [1] 35.35425
sd(as.numeric(dUK$age), na.rm = T) #13.35
## Warning in is.data.frame(x): NAs introduced by coercion
## [1] 13.34589
mean(as.numeric(dUS$age), na.rm = T) #48.23
## [1] 48.22771
sd(as.numeric(dUS$age), na.rm = T) #15.55
## [1] 15.55155

2.8 8. Vaccine Intentions (Supplemental Table 4)

m1 <- lm(vaxxIntentions.z ~ 
           (bias.mean.z * bias.sd.z * USvUK) +
           (bias.mean.z + bias.sd.z + USvUK) * 
           (ideology.z + age.z + education.z), data = d2)

m1.us <- lm(vaxxIntentions.z ~ 
           (bias.mean.z * bias.sd.z * US_0) +
           (bias.mean.z + bias.sd.z + US_0) * 
           (ideology.z + age.z + education.z), data = d2)

m1.uk <- lm(vaxxIntentions.z ~ 
           (bias.mean.z * bias.sd.z * UK_0) +
           (bias.mean.z + bias.sd.z + UK_0) * 
           (ideology.z + age.z + education.z), data = d2)


tab_model(m1, m1.us, m1.uk,
          dv.labels = c("Country (US = -.5, UK = .5)", "United States (US = 0, UK = 1)", "United Kingdom (US = 1, UK = 0)"),
          title = "Outcome: Vaccine Intention",
          pred.labels = c("Intercept", 
                          "Conservative Media Consumption (CMC)", 
                          "Variability in Media Consumption (VMC)",
                          "Country",
                          "Ideology",
                          "Age",
                          "Education",
                          
                          "CMC x VMC",
                          
                          "CMC x Country",
                          "VMC x Country",
                          
                          "CMC x Ideology",
                          "CMC x Age",
                          "CMC x Education",
                          
                          "VMC x Ideology",
                          "VMC x Age",
                          "VMC x Education",
                          
                          "Country x Ideology",
                          "Country x Age",
                          "Country x Education",
                          "CMC x VMC x Country",
                          
                          "US",
                          "CMC x US",
                          "VMC x US",
                          "US x Ideology",
                          "US x Age",
                          "US x Education",
                          "CMC x VMC x US",
                          
                          "UK",
                          "CMC x UK",
                          "VMC x UK",
                          "UK x Ideology",
                          "UK x Age",
                          "UK x Education",
                          "CMC x VMC x UK"
                          ),
          string.est = "Est",
          show.stat = T,
          show.se = T,
          show.ci = F,
          string.se = "SE",
          string.stat = "t",
          digits = 2)
Outcome: Vaccine Intention
  Country (US = -.5, UK = .5) United States (US = 0, UK = 1) United Kingdom (US = 1, UK = 0)
Predictors Est SE t p Est SE t p Est SE t p
Intercept 0.02 0.02 1.06 0.291 0.03 0.02 1.44 0.151 0.01 0.03 0.24 0.807
Conservative Media Consumption (CMC) -0.16 0.03 -6.00 <0.001 -0.21 0.03 -7.33 <0.001 -0.11 0.04 -2.45 0.014
Variability in Media Consumption (VMC) 0.06 0.02 3.14 0.002 0.04 0.02 1.96 0.050 0.07 0.03 2.49 0.013
Country -0.02 0.03 -0.73 0.465
Ideology -0.13 0.02 -7.84 <0.001 -0.15 0.02 -7.50 <0.001 -0.12 0.03 -4.25 <0.001
Age 0.10 0.02 6.16 <0.001 0.17 0.02 9.72 <0.001 0.02 0.03 0.75 0.454
Education 0.04 0.02 2.33 0.020 0.09 0.02 4.93 <0.001 -0.02 0.03 -0.69 0.489
CMC x VMC 0.02 0.02 0.76 0.445 0.06 0.02 3.10 0.002 -0.03 0.04 -0.67 0.504
CMC x Country 0.10 0.05 1.89 0.059
VMC x Country 0.03 0.04 0.78 0.437
CMC x Ideology 0.01 0.01 0.69 0.489 0.01 0.01 0.69 0.489 0.01 0.01 0.69 0.489
CMC x Age 0.05 0.02 3.40 0.001 0.05 0.02 3.40 0.001 0.05 0.02 3.40 0.001
CMC x Education 0.01 0.01 0.87 0.386 0.01 0.01 0.87 0.386 0.01 0.01 0.87 0.386
VMC x Ideology 0.08 0.02 4.96 <0.001 0.08 0.02 4.96 <0.001 0.08 0.02 4.96 <0.001
VMC x Age -0.00 0.02 -0.20 0.839 -0.00 0.02 -0.20 0.839 -0.00 0.02 -0.20 0.839
VMC x Education -0.03 0.01 -2.21 0.027 -0.03 0.01 -2.21 0.027 -0.03 0.01 -2.21 0.027
Country x Ideology 0.03 0.03 1.01 0.311
Country x Age -0.16 0.03 -4.98 <0.001
Country x Education -0.11 0.03 -3.44 0.001
CMC x VMC x Country -0.08 0.04 -1.98 0.048
US -0.02 0.03 -0.73 0.465
CMC x US 0.10 0.05 1.89 0.059
VMC x US 0.03 0.04 0.78 0.437
US x Ideology 0.03 0.03 1.01 0.311
US x Age -0.16 0.03 -4.98 <0.001
US x Education -0.11 0.03 -3.44 0.001
CMC x VMC x US -0.08 0.04 -1.98 0.048
UK 0.02 0.03 0.73 0.465
CMC x UK -0.10 0.05 -1.89 0.059
VMC x UK -0.03 0.04 -0.78 0.437
UK x Ideology -0.03 0.03 -1.01 0.311
UK x Age 0.16 0.03 4.98 <0.001
UK x Education 0.11 0.03 3.44 0.001
CMC x VMC x UK 0.08 0.04 1.98 0.048
Observations 4460 4460 4460
R2 / R2 adjusted 0.100 / 0.097 0.100 / 0.097 0.100 / 0.097
round(etaSquared(m1),3)
##                             eta.sq eta.sq.part
## bias.mean.z                  0.012       0.013
## bias.sd.z                    0.004       0.005
## USvUK                        0.000       0.000
## ideology.z                   0.014       0.016
## age.z                        0.015       0.016
## education.z                  0.002       0.002
## bias.mean.z:bias.sd.z        0.001       0.001
## bias.mean.z:USvUK            0.000       0.000
## bias.sd.z:USvUK              0.000       0.000
## bias.mean.z:ideology.z       0.000       0.000
## bias.mean.z:age.z            0.002       0.003
## bias.mean.z:education.z      0.000       0.000
## bias.sd.z:ideology.z         0.005       0.006
## bias.sd.z:age.z              0.000       0.000
## bias.sd.z:education.z        0.001       0.001
## USvUK:ideology.z             0.000       0.000
## USvUK:age.z                  0.005       0.006
## USvUK:education.z            0.002       0.003
## bias.mean.z:bias.sd.z:USvUK  0.001       0.001

2.9 9. Robust check - UK Corr Table

corr <- data.frame(dUK$vaxxIntentions)
colnames(corr)[colnames(corr) == "dUK.vaxxIntentions"] <- "vaxxIntent"

corr$analytic <- dUK$analytic.mean
corr$affect <- dUK$affect.mean
corr$threat <- dUK$threat.mean
corr$negEmo <- dUK$negEmo.mean
corr$posEmo <- dUK$posEmo.mean
corr$clout <- dUK$clout.mean
corr$reliab <- dUK$rel.mean

corr$bias.mean <- dUK$bias.mean
corr$bias.sd <- dUK$bias.sd
corr$exp.sum <- dUK$exp.sum

corr2 <- corr_coef(corr, use = "pairwise.complete.obs")
## Warning: Missing values in the data. Option 'pairwise.complete.obs' used to
## compute correlation with all complete pairs of observations.
plot(corr2)

2.10 10. Robust check - US Corr Table

corr <- data.frame(dUS$vaxxIntentions)
colnames(corr)[colnames(corr) == "dUS.vaxxIntentions"] <- "vaxxIntent"

corr$analytic <- dUS$analytic.mean
corr$affect <- dUS$affect.mean
corr$threat <- dUS$threat.mean
corr$negEmo <- dUS$negEmo.mean
corr$posEmo <- dUS$posEmo.mean
corr$clout <- dUS$clout.mean
corr$reliab <- dUS$rel.mean

corr$bias.mean <- dUS$bias.mean
corr$bias.sd <- dUS$bias.sd
corr$exp.sum <- dUS$exp.sum

corr2 <- corr_coef(corr, use = "pairwise.complete.obs")
## Warning: Missing values in the data. Option 'pairwise.complete.obs' used to
## compute correlation with all complete pairs of observations.
plot(corr2)

2.11 11. Robust check - Vaccine intentions

m.analytic <- lm(vaxxIntentions.z ~ (bias.mean.z * bias.sd.z) + 
                     (bias.mean.z * analytic.mean.z) + 
                     (analytic.mean.z * bias.sd.z) +
                     (bias.mean.z + bias.sd.z + analytic.mean.z) * 
                   (UK_0  + ideology.z + age.z + education.z),
                 data = d2)

m.threat <- lm(vaxxIntentions.z ~ (bias.mean.z * bias.sd.z) + 
                   (bias.mean.z * threat.mean.z) + 
                   (threat.mean.z * bias.sd.z) +
                   (bias.mean.z + bias.sd.z + threat.mean.z) * 
                   (UK_0  + ideology.z + age.z + education.z),
                 data = d2)

m.posEmo <- lm(vaxxIntentions.z ~ (bias.mean.z * bias.sd.z) + 
                   (bias.mean.z * posEmo.mean.z) + 
                   (posEmo.mean.z * bias.sd.z) +
                   (bias.mean.z + bias.sd.z + posEmo.mean.z) * 
                   (UK_0  + ideology.z + age.z + education.z),
                 data = d2)

m.negEmo <- lm(vaxxIntentions.z ~ (bias.mean.z * bias.sd.z) + 
                   (bias.mean.z * negEmo.mean.z) + 
                   (negEmo.mean.z * bias.sd.z) +
                   (bias.mean.z + bias.sd.z + negEmo.mean.z) * 
                   (UK_0  + ideology.z + age.z + education.z),
                 data = d2)

m.affect <- lm(vaxxIntentions.z ~ (bias.mean.z * bias.sd.z) + 
                   (bias.mean.z * affect.mean.z) + 
                   (affect.mean.z * bias.sd.z) +
                   (bias.mean.z + bias.sd.z + affect.mean.z) * 
                   (UK_0  + ideology.z + age.z + education.z),
                 data = d2)

m.clout <- lm(vaxxIntentions.z ~ (bias.mean.z * bias.sd.z) + 
                  (bias.mean.z * clout.mean.z) + 
                  (clout.mean.z * bias.sd.z) +
                  (bias.mean.z + bias.sd.z + clout.mean.z) * 
                   (UK_0  + ideology.z + age.z + education.z),
                 data = d2)

m.authentic <- lm(vaxxIntentions.z ~ (bias.mean.z * bias.sd.z) + 
                      (bias.mean.z * authentic.mean.z) + 
                      (authentic.mean.z * bias.sd.z) +
                      (bias.mean.z + bias.sd.z + authentic.mean.z) * 
                   (UK_0  + ideology.z + age.z + education.z),
                 data = d2)

tab_model(m.affect, m.analytic, m.authentic, m.clout, m.posEmo, m.negEmo, m.threat,
          dv.labels = c("affect", 
                        "analytic", 
                        "authentic", 
                        "clout", 
                        "positive emotion", 
                        "negative emotion", 
                        "threat", 
                        "reliability"),
          
          title = "Outcome: Vaccination Behavior",
          string.est = "Est",
          show.stat = F,
          show.se = F,
          show.ci = F,
          string.stat = "t",
          digits = 2)
Outcome: Vaccination Behavior
  affect analytic authentic clout positive emotion negative emotion threat reliability
Predictors Est p Est p Est p Est p Est p Est p Est p
(Intercept) -0.03 0.277 -0.01 0.713 -0.01 0.767 -0.03 0.316 -0.03 0.223 -0.02 0.520 -0.02 0.565
bias mean z 0.04 0.403 -0.20 <0.001 -0.19 <0.001 -0.16 <0.001 -0.10 0.041 -0.12 <0.001 -0.23 <0.001
bias sd z -0.04 0.242 0.11 <0.001 0.07 0.006 0.10 <0.001 0.02 0.644 0.13 <0.001 0.10 0.007
affect mean z -0.21 <0.001
UK 0 0.06 0.087 0.03 0.348 0.04 0.287 0.05 0.166 0.06 0.108 0.04 0.265 0.05 0.170
ideology z -0.15 <0.001 -0.15 <0.001 -0.15 <0.001 -0.14 <0.001 -0.15 <0.001 -0.14 <0.001 -0.15 <0.001
age z 0.12 <0.001 0.13 <0.001 0.12 <0.001 0.12 <0.001 0.13 <0.001 0.12 <0.001 0.13 <0.001
education z 0.06 <0.001 0.06 <0.001 0.06 <0.001 0.07 <0.001 0.06 <0.001 0.06 <0.001 0.06 <0.001
bias mean z × bias sd z 0.05 0.008 0.05 0.006 0.05 0.006 0.04 0.042 0.04 0.011 0.04 0.023 0.05 0.007
bias mean z × affect mean
z
0.01 0.474
bias sd z × affect mean z -0.01 0.492
bias mean z × UK 0 -0.23 <0.001 0.02 0.607 -0.00 0.923 -0.03 0.344 -0.09 0.060 -0.07 0.040 0.04 0.522
bias mean z × ideology z 0.00 0.792 -0.00 0.901 0.01 0.526 0.01 0.338 0.00 0.981 0.01 0.392 0.00 0.992
bias mean z × age z 0.04 0.008 0.04 0.017 0.05 0.002 0.05 0.002 0.04 0.007 0.05 <0.001 0.05 0.001
bias mean z × education z 0.01 0.461 0.01 0.653 0.01 0.644 0.01 0.549 0.01 0.396 0.01 0.591 0.01 0.730
bias sd z × UK 0 0.08 0.034 -0.03 0.400 -0.03 0.465 -0.06 0.087 0.02 0.666 -0.09 0.019 -0.05 0.235
bias sd z × ideology z 0.07 <0.001 0.07 <0.001 0.07 <0.001 0.08 <0.001 0.07 <0.001 0.07 <0.001 0.07 <0.001
bias sd z × age z -0.01 0.598 -0.01 0.535 -0.00 0.751 -0.00 0.995 -0.00 0.849 -0.00 0.938 0.00 0.909
bias sd z × education z -0.03 0.026 -0.03 0.021 -0.03 0.027 -0.03 0.020 -0.03 0.017 -0.03 0.050 -0.03 0.032
affect mean z × UK 0 0.25 <0.001
affect mean z × ideology
z
0.04 0.009
affect mean z × age z -0.00 0.745
affect mean z × education
z
-0.01 0.501
analytic mean z -0.17 <0.001
bias mean z × analytic
mean z
0.03 0.100
bias sd z × analytic mean
z
-0.00 0.948
analytic mean z × UK 0 0.21 <0.001
analytic mean z ×
ideology z
-0.05 0.001
analytic mean z × age z -0.03 0.027
analytic mean z ×
education z
0.00 0.846
authentic mean z 0.17 <0.001
bias mean z × authentic
mean z
-0.02 0.308
bias sd z × authentic
mean z
-0.00 0.922
authentic mean z × UK 0 -0.17 <0.001
authentic mean z ×
ideology z
0.01 0.663
authentic mean z × age z 0.00 0.803
authentic mean z ×
education z
0.00 0.973
clout mean z 0.15 <0.001
bias mean z × clout mean
z
-0.01 0.561
bias sd z × clout mean z -0.03 0.030
clout mean z × UK 0 -0.11 0.001
clout mean z × ideology z 0.06 <0.001
clout mean z × age z 0.03 0.084
clout mean z × education
z
-0.01 0.562
posEmo mean z -0.03 0.577
bias mean z × posEmo mean
z
0.01 0.748
bias sd z × posEmo mean z -0.02 0.205
posEmo mean z × UK 0 0.06 0.297
posEmo mean z × ideology
z
0.06 <0.001
posEmo mean z × age z 0.01 0.488
posEmo mean z × education
z
-0.02 0.285
negEmo mean z -0.19 <0.001
bias mean z × negEmo mean
z
0.01 0.513
bias sd z × negEmo mean z 0.01 0.618
negEmo mean z × UK 0 0.23 <0.001
negEmo mean z × ideology
z
0.01 0.624
negEmo mean z × age z -0.00 0.815
negEmo mean z × education
z
-0.00 0.781
threat mean z -0.12 0.024
bias mean z × threat mean
z
0.00 0.770
bias sd z × threat mean z 0.02 0.242
threat mean z × UK 0 0.11 0.049
threat mean z × ideology
z
-0.03 0.090
threat mean z × age z -0.01 0.739
threat mean z × education
z
0.00 0.781
Observations 4460 4460 4460 4460 4460 4460 4460
R2 / R2 adjusted 0.099 / 0.095 0.103 / 0.099 0.100 / 0.096 0.103 / 0.098 0.096 / 0.092 0.100 / 0.096 0.093 / 0.089

2.12 12. measures

# vaccine intentions
mean(dUS$vaxxIntentions, na.rm = T); sd(dUS$vaxxIntentions, na.rm = T)
## [1] 0.5844539
## [1] 2.156637
mean(dUK$vaxxIntentions, na.rm = T); sd(dUK$vaxxIntentions, na.rm = T)
## [1] 1.368842
## [1] 1.812618
cor.test(af$bias.af, af$bias.as)
## 
##  Pearson's product-moment correlation
## 
## data:  af$bias.af and af$bias.as
## t = 11.454, df = 21, p-value = 1.711e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8363048 0.9695822
## sample estimates:
##       cor 
## 0.9284467
# conservative media consumption
mean(d$bias.mean.1.15, na.rm = T); sd(d$bias.mean.1.15, na.rm = T)
## [1] -0.4205296
## [1] 0.531026
mean(d$bias.mean.2.15, na.rm = T); sd(d$bias.mean.2.15, na.rm = T)
## [1] -0.4084528
## [1] 0.526748
mean(d$bias.mean.3.20, na.rm = T); sd(d$bias.mean.3.20, na.rm = T)
## [1] -0.2308115
## [1] 0.4403217
mean(dUK$bias.mean, na.rm = T); sd(dUK$bias.mean, na.rm = T)
## [1] -0.01259991
## [1] 0.3303387
# ideological variety of media consumption
mean(d$bias.sd.1.15, na.rm = T); sd(d$bias.sd.1.15, na.rm = T)
## [1] 1.094834
## [1] 0.6386927
mean(d$bias.sd.2.15, na.rm = T); sd(d$bias.sd.2.15, na.rm = T)
## [1] 1.053586
## [1] 0.6232238
mean(d$bias.sd.3.20, na.rm = T); sd(d$bias.sd.3.20, na.rm = T)
## [1] 1.415245
## [1] 1.155824
mean(dUK$bias.mean, na.rm = T); sd(dUK$bias.sd, na.rm = T)
## [1] -0.01259991
## [1] 0.7730456