#Abstract: Comparing Monoprotic Titration Curve vs. Binding Curve
#Titration Data
Data <- read.csv("Titration Lab Data 1.csv")
Data
## pH Volume.Of.NaOH..mL. X X.1
## 1 3.60 0.0 NA
## 2 3.61 1.0 NA
## 3 3.70 2.0 NA
## 4 3.75 3.0 NA
## 5 3.81 4.0 NA
## 6 3.85 5.0 NA
## 7 4.00 6.0 NA
## 8 4.10 7.0 NA
## 9 4.25 8.0 NA
## 10 4.35 9.0 NA
## 11 4.40 10.0 NA 0,1
## 12 4.50 11.0 NA
## 13 4.67 12.0 NA
## 14 4.90 13.0 NA
## 15 5.10 14.0 NA
## 16 5.23 16.0 NA
## 17 5.29 17.0 NA
## 18 5.32 18.0 NA
## 19 5.38 19.0 NA
## 20 5.40 20.0 NA
## 21 5.50 21.0 NA
## 22 5.58 22.0 NA
## 23 5.74 23.0 NA
## 24 6.22 24.0 NA
## 25 7.40 25.0 NA
## 26 11.35 26.0 NA
## 27 11.59 27.0 NA
## 28 11.80 28.0 NA
## 29 11.91 29.5 NA
Volume <- Data$Volume.Of.NaOH..mL.
Volume
## [1] 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
## [16] 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.5
pH <-Data$pH
pH
## [1] 3.60 3.61 3.70 3.75 3.81 3.85 4.00 4.10 4.25 4.35 4.40 4.50
## [13] 4.67 4.90 5.10 5.23 5.29 5.32 5.38 5.40 5.50 5.58 5.74 6.22
## [25] 7.40 11.35 11.59 11.80 11.91
#Binding Curve Information
H <- 10^-(pH)
H
## [1] 2.511886e-04 2.454709e-04 1.995262e-04 1.778279e-04 1.548817e-04
## [6] 1.412538e-04 1.000000e-04 7.943282e-05 5.623413e-05 4.466836e-05
## [11] 3.981072e-05 3.162278e-05 2.137962e-05 1.258925e-05 7.943282e-06
## [16] 5.888437e-06 5.128614e-06 4.786301e-06 4.168694e-06 3.981072e-06
## [21] 3.162278e-06 2.630268e-06 1.819701e-06 6.025596e-07 3.981072e-08
## [26] 4.466836e-12 2.570396e-12 1.584893e-12 1.230269e-12
plot(Volume,pH,main = "Volume of NaOH vs. pH",xlab = "Volume of NaOH (mL)",ylab = "pH")
Vinital<- 25.00
Vadd <- Volume
Vend <- 25.5
CB <- 0.10
FB <- 1 -(CB * Vadd + H * (Vinital + Vadd)) / (CB * Vend)
FB
## [1] 0.99753737 0.95828147 0.91945600 0.88040032 0.84137586 0.80225976
## [7] 0.76349020 0.72449339 0.68554677 0.64646325 0.60729672 0.56818101
## [13] 0.52910155 0.49000847 0.45085891 0.37245434 0.33324886 0.29403694
## [19] 0.25483003 0.21561602 0.17641354 0.13720642 0.09800496 0.05881195
## [25] 0.01960706 -0.01960784 -0.05882353 -0.09803922 -0.15686275
plot(pH,FB,main="Fraction Bound vs. pH",xlim = c(3,8), ylim = c(0,1), ylab="Fraction Bound")
library(nls2)
## Loading required package: proto
fit <- nls2(FB ~ H/(KD+H), start=c(KD=0.001))
summary(fit)
##
## Formula: FB ~ H/(KD + H)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## KD 1.695e-05 1.655e-06 10.24 5.68e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07523 on 28 degrees of freedom
##
## Number of iterations to convergence: 10
## Achieved convergence tolerance: 2.534e-06
lines(pH,predict(fit),col="red")