Smith is in jail and has 1 dollar; he can get out on bail if he has 8
dollars. A guard agrees to make a series of bets with him. If Smith bets
A dollars, he wins A dollars with probability .4 and loses A dollars
with probability .6. Find the probability that he wins 8 dollars before
losing all of his money if
- he bets 1 dollar each time (timid strategy).
- he bets, each time, as much as possible but not more than necessary
to bring his fortune up to 8 dollars (bold strategy).
- Which strategy gives Smith the better chance of getting out of
jail?
In this strategy, Smith bets 1 dollar each time until he either wins
8 dollars or loses all his money.
Let \(p\) be the probability that
Smith wins 8 dollars before losing all his money.
There are a few scenarios to consider:
So, the probability \(p\) that Smith
wins 8 dollars before losing all his money is the sum of an infinite
geometric series:
\[
p = 0.4 + 0.6 \times 0.4 + (0.6)^2 \times 0.4 + \ldots
\]
This is a geometric series with first term \(a = 0.4\) and common ratio \(r = 0.6 \times 0.4 = 0.24\).
Using the formula for the sum of an infinite geometric series:
\[
p = \frac{a}{1 - r} = \frac{0.4}{1 - 0.24} = \frac{0.4}{0.76} \approx
0.526
\]
In this strategy, Smith bets the maximum amount he can each time
until he reaches 8 dollars or loses all his money.
Let’s denote \(p'\) as the
probability that Smith wins 8 dollars before losing all his money using
this bold strategy.
If Smith has \(x\) dollars, he will
bet \(\min(8 - x, x)\) dollars each
time. Therefore, \(p'\) can be
calculated as follows:
\[
p' = P(\text{win next bet}) + P(\text{lose next bet}) \times p'
\]
\[
p' = 0.4 + 0.6 \times p'
\]
Solving for \(p'\):
\[
p' = \frac{0.4}{0.4 + 0.6} = \frac{0.4}{1} = 0.4
\]
Comparing the probabilities:
The gives Smith a better chance of getting out of jail because \(p\) is greater than \(p'\).
LS0tDQp0aXRsZTogIkRhdGEgNjA1IGhvbWV3b3JrIDEwIg0KYXV0aG9yOiAiTGF1cmEgQiINCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCm91dHB1dDogb3BlbmludHJvOjpsYWJfcmVwb3J0DQotLS0NCg0KU21pdGggaXMgaW4gamFpbCBhbmQgaGFzIDEgZG9sbGFyOyBoZSBjYW4gZ2V0IG91dCBvbiBiYWlsIGlmIGhlIGhhcyA4IGRvbGxhcnMuDQpBIGd1YXJkIGFncmVlcyB0byBtYWtlIGEgc2VyaWVzIG9mIGJldHMgd2l0aCBoaW0uIElmIFNtaXRoIGJldHMgQSBkb2xsYXJzLCBoZSB3aW5zIEEgZG9sbGFycyB3aXRoIHByb2JhYmlsaXR5IC40IGFuZCBsb3NlcyBBIGRvbGxhcnMgd2l0aCBwcm9iYWJpbGl0eSAuNi4NCkZpbmQgdGhlIHByb2JhYmlsaXR5IHRoYXQgaGUgd2lucyA4IGRvbGxhcnMgYmVmb3JlIGxvc2luZyBhbGwgb2YgaGlzIG1vbmV5IGlmDQoNCihhKSBoZSBiZXRzIDEgZG9sbGFyIGVhY2ggdGltZSAodGltaWQgc3RyYXRlZ3kpLg0KKGIpIGhlIGJldHMsIGVhY2ggdGltZSwgYXMgbXVjaCBhcyBwb3NzaWJsZSBidXQgbm90IG1vcmUgdGhhbiBuZWNlc3NhcnkgdG8gYnJpbmcgaGlzIGZvcnR1bmUgdXAgdG8gOCBkb2xsYXJzIChib2xkIHN0cmF0ZWd5KS4NCihjKSBXaGljaCBzdHJhdGVneSBnaXZlcyBTbWl0aCB0aGUgYmV0dGVyIGNoYW5jZSBvZiBnZXR0aW5nIG91dCBvZiBqYWlsPw0KDQoNCkluIHRoaXMgc3RyYXRlZ3ksIFNtaXRoIGJldHMgMSBkb2xsYXIgZWFjaCB0aW1lIHVudGlsIGhlIGVpdGhlciB3aW5zIDggZG9sbGFycyBvciBsb3NlcyBhbGwgaGlzIG1vbmV5Lg0KDQpMZXQgXCggcCBcKSBiZSB0aGUgcHJvYmFiaWxpdHkgdGhhdCBTbWl0aCB3aW5zIDggZG9sbGFycyBiZWZvcmUgbG9zaW5nIGFsbCBoaXMgbW9uZXkuDQoNClRoZXJlIGFyZSBhIGZldyBzY2VuYXJpb3MgdG8gY29uc2lkZXI6DQoNClxiZWdpbntlbnVtZXJhdGV9DQogIFxpdGVtIFNtaXRoIHdpbnMgdGhlIGZpcnN0IGJldDogUHJvYmFiaWxpdHkgXCggUChcdGV4dHt3aW4gZmlyc3QgYmV0fSkgPSAwLjQgXCkNCiAgXGl0ZW0gU21pdGggbG9zZXMgdGhlIGZpcnN0IGJldCBidXQgd2lucyB0aGUgc2Vjb25kIGJldDogUHJvYmFiaWxpdHkgXCggUChcdGV4dHtsb3NlIGZpcnN0IGJldH0pIFx0aW1lcyBQKFx0ZXh0e3dpbiBzZWNvbmQgYmV0fSkgPSAwLjYgXHRpbWVzIDAuNCA9IDAuMjQgXCkNCiAgXGl0ZW0gU21pdGggbG9zZXMgdGhlIGZpcnN0IHR3byBiZXRzIGJ1dCB3aW5zIHRoZSB0aGlyZCBiZXQ6IFByb2JhYmlsaXR5IFwoICgwLjYpXjIgXHRpbWVzIDAuNCA9IDAuMTQ0IFwpDQogIFxpdGVtIFRoaXMgcGF0dGVybiBjb250aW51ZXMuLi4NClxlbmR7ZW51bWVyYXRlfQ0KDQpTbywgdGhlIHByb2JhYmlsaXR5IFwoIHAgXCkgdGhhdCBTbWl0aCB3aW5zIDggZG9sbGFycyBiZWZvcmUgbG9zaW5nIGFsbCBoaXMgbW9uZXkgaXMgdGhlIHN1bSBvZiBhbiBpbmZpbml0ZSBnZW9tZXRyaWMgc2VyaWVzOg0KDQpcWw0KcCA9IDAuNCArIDAuNiBcdGltZXMgMC40ICsgKDAuNileMiBcdGltZXMgMC40ICsgXGxkb3RzDQpcXQ0KDQpUaGlzIGlzIGEgZ2VvbWV0cmljIHNlcmllcyB3aXRoIGZpcnN0IHRlcm0gXCggYSA9IDAuNCBcKSBhbmQgY29tbW9uIHJhdGlvIFwoIHIgPSAwLjYgXHRpbWVzIDAuNCA9IDAuMjQgXCkuDQoNClVzaW5nIHRoZSBmb3JtdWxhIGZvciB0aGUgc3VtIG9mIGFuIGluZmluaXRlIGdlb21ldHJpYyBzZXJpZXM6DQoNClxbDQpwID0gXGZyYWN7YX17MSAtIHJ9ID0gXGZyYWN7MC40fXsxIC0gMC4yNH0gPSBcZnJhY3swLjR9ezAuNzZ9IFxhcHByb3ggMC41MjYNClxdDQoNClxzdWJzZWN0aW9uKnsoYikgQm9sZCBTdHJhdGVneTogQmV0dGluZyBhcyBtdWNoIGFzIHBvc3NpYmxlIGVhY2ggdGltZX0NCg0KSW4gdGhpcyBzdHJhdGVneSwgU21pdGggYmV0cyB0aGUgbWF4aW11bSBhbW91bnQgaGUgY2FuIGVhY2ggdGltZSB1bnRpbCBoZSByZWFjaGVzIDggZG9sbGFycyBvciBsb3NlcyBhbGwgaGlzIG1vbmV5Lg0KDQpMZXQncyBkZW5vdGUgXCggcCcgXCkgYXMgdGhlIHByb2JhYmlsaXR5IHRoYXQgU21pdGggd2lucyA4IGRvbGxhcnMgYmVmb3JlIGxvc2luZyBhbGwgaGlzIG1vbmV5IHVzaW5nIHRoaXMgYm9sZCBzdHJhdGVneS4NCg0KSWYgU21pdGggaGFzIFwoIHggXCkgZG9sbGFycywgaGUgd2lsbCBiZXQgXCggXG1pbig4IC0geCwgeCkgXCkgZG9sbGFycyBlYWNoIHRpbWUuIFRoZXJlZm9yZSwgXCggcCcgXCkgY2FuIGJlIGNhbGN1bGF0ZWQgYXMgZm9sbG93czoNCg0KXFsNCnAnID0gUChcdGV4dHt3aW4gbmV4dCBiZXR9KSArIFAoXHRleHR7bG9zZSBuZXh0IGJldH0pIFx0aW1lcyBwJw0KXF0NCg0KXFsNCnAnID0gMC40ICsgMC42IFx0aW1lcyBwJw0KXF0NCg0KU29sdmluZyBmb3IgXCggcCcgXCk6DQoNClxbDQpwJyA9IFxmcmFjezAuNH17MC40ICsgMC42fSA9IFxmcmFjezAuNH17MX0gPSAwLjQNClxdDQoNClxzdWJzZWN0aW9uKnsoYykgV2hpY2ggc3RyYXRlZ3kgZ2l2ZXMgU21pdGggdGhlIGJldHRlciBjaGFuY2Ugb2YgZ2V0dGluZyBvdXQgb2YgamFpbD99DQoNCkNvbXBhcmluZyB0aGUgcHJvYmFiaWxpdGllczoNCg0KXGJlZ2lue2l0ZW1pemV9DQogIFxpdGVtIFx0ZXh0YmZ7VGltaWQgU3RyYXRlZ3kgKGEpfTogXCggcCBcYXBwcm94IDAuNTI2IFwpDQogIFxpdGVtIFx0ZXh0YmZ7Qm9sZCBTdHJhdGVneSAoYil9OiBcKCBwJyA9IDAuNCBcKQ0KXGVuZHtpdGVtaXplfQ0KDQpUaGUgXHRleHRiZnt0aW1pZCBzdHJhdGVneX0gZ2l2ZXMgU21pdGggYSBiZXR0ZXIgY2hhbmNlIG9mIGdldHRpbmcgb3V0IG9mIGphaWwgYmVjYXVzZSBcKCBwIFwpIGlzIGdyZWF0ZXIgdGhhbiBcKCBwJyBcKS4NCg0KDQoNCg0KDQoNCg==