Foi considerada violência física de pessoas do sexo feminino de 18 anos ou mais de idade que informaram terem sofrido violência física em 2019.
Fonte: IBGE - Pesquisa Nacional de Saúde (Microdados da PNS de 2019) https://www.ipea.gov.br/atlasviolencia/dados-series/270. Autor: Giseldo da Silva Neo Email:

── Attaching core tidyverse packages ────────────────────────────────────────────────────────────────────────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.0     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     ── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errorsLinking to GEOS 3.11.2, GDAL 3.8.2, PROJ 9.3.1; sf_use_s2() is TRUE

Attaching package: ‘rnaturalearthdata’

The following object is masked from ‘package:rnaturalearth’:

    countries110
df = read_csv('violencia.csv')
Rows: 27 Columns: 4── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Delimiter: ","
chr (1): nome
dbl (3): cod, periodo, valor
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(df)
ABCDEFGHIJ0123456789
cod
<dbl>
nome
<chr>
periodo
<dbl>
valor
<dbl>
27AL201941
16AP201912
13AM201967
29BA2019365
23CE2019157
53DF201950
summary (df$valor)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   10.0    40.0    67.0   132.7   168.5   817.0 

A menor quantidade de crime contra a mulher em 2019 foi de 10 mil. A maior 817 mil. Em média, por estado em 2019, foram 132 mil crimes contra a mulher.

ggplot(data=df) +
  geom_col(mapping = aes(x=nome, y=valor)) +
  xlab(label="Estados") +
  ylab(label="Violência Física (Mil pessoas)") +
  labs(title = "Crimes contra a a mulher em 2019 por estado brasileiro.") +
  theme_minimal()

Conforme os dados, os crimes contra a mulher em 2019 no estado de São Paulo foram maiores do que em outros estados. Só em são Paulo, foram 800 mil mulheres vítimas de violência.

df["regiao"] <- c("Nordeste", "Norte", "Norte", "Nordeste", "Nordeste", "Centro-Oeste", "Sudeste", "Centro-Oeste", "Nordeste","Centro-Oeste", "Centro-Oeste", "Sudeste", "Sul", "Nordeste", "Sul", "Nordeste", "Nordeste", "Sudeste", "Nordeste", "Sul", "Norte", "Sul", "Sudeste", "Nordeste", "Norte", "Norte", "Norte")

df_grp_regiao = df %>% group_by(regiao) %>%
  summarise(crimes=sum(valor))

ggplot(data=df_grp_regiao, aes(x=regiao, y=crimes)) + 
  geom_col() + 
  xlab("Região") +
  ylab("Violência Física (Mil pessoas)") +
  labs(
    title = "Crimes contra a mulher em 2019 agrupado por região."
  ) + 
  theme_minimal()

Conforme dados a região brasileira que teve a maior quantidade de crimes contra a mulher em 2019 foi a região sudeste.

# Carregar os dados novamente
df = read_csv('violencia.csv')
Rows: 27 Columns: 4── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Delimiter: ","
chr (1): nome
dbl (3): cod, periodo, valor
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Carregar o shapefile do Brasil
brasil <- ne_countries(country = "brazil", returnclass = "sf")

# Carregar o shapefile das regiões do Brasil
regioes_brasil <- ne_states(country = "brazil", returnclass = "sf")

# Criar dados fictícios
dados <- data.frame(regiao = regioes_brasil$region, df)

# Unir os dados das regiões com os dados fictícios
regioes_dados <- merge(regioes_brasil, dados, by.x = "postal", by.y = "nome")

# Plotar o gráfico
ggplot() +
  geom_sf(data = brasil, fill = "lightgray", color = "black") +
  geom_sf(data = regioes_dados, aes(fill = valor), color = "black") +
  scale_fill_viridis_c(name = "Crimes") +
  labs(
    title = "Crimes contra a mulher em 2019 agrupado por região."
  ) + 
  theme_minimal()

Conforme os dados são paulo, na região sudeste e na região ao redor de São Paulo, foram os estados com mais violência contra a mulher em 2019. Já a Região norte a menor quantidade de crimes.

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2sgLSBWaW9sw6puY2lhIGNvbnRyYSBhIG11bGhlciAoMjAxOSkiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCmF1dG9yOiAiR2lzZWxkbyBkYSBTaWx2YSBOw6lvIg0KLS0tDQoNCkZvaSBjb25zaWRlcmFkYSB2aW9sw6puY2lhIGbDrXNpY2EgZGUgcGVzc29hcyBkbyBzZXhvIGZlbWluaW5vIGRlIDE4IGFub3Mgb3UgbWFpcyBkZSBpZGFkZSBxdWUgaW5mb3JtYXJhbSB0ZXJlbSBzb2ZyaWRvIHZpb2zDqm5jaWEgZsOtc2ljYSBlbSAyMDE5LiAgDQpGb250ZTogSUJHRSAtIFBlc3F1aXNhIE5hY2lvbmFsIGRlIFNhw7pkZSAoTWljcm9kYWRvcyBkYSBQTlMgZGUgMjAxOSkgaHR0cHM6Ly93d3cuaXBlYS5nb3YuYnIvYXRsYXN2aW9sZW5jaWEvZGFkb3Mtc2VyaWVzLzI3MC4NCkF1dG9yOiBHaXNlbGRvIGRhIFNpbHZhIE5lbw0KRW1haWw6IGdpc2VsZG9AZ21haWwuY29tDQoNCmBgYHtyIGVjaG89RkFMU0V9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShzZikNCmxpYnJhcnkocm5hdHVyYWxlYXJ0aCkNCmxpYnJhcnkocm5hdHVyYWxlYXJ0aGRhdGEpDQpgYGANCg0KYGBge3J9DQpkZiA9IHJlYWRfY3N2KCdkYXRhL3Zpb2xlbmNpYS5jc3YnKQ0KaGVhZChkZikNCmBgYA0KYGBge3J9DQpzdW1tYXJ5IChkZiR2YWxvcikNCmBgYA0KQSBtZW5vciBxdWFudGlkYWRlIGRlIGNyaW1lIGNvbnRyYSBhIG11bGhlciBlbSAyMDE5IGZvaSBkZSAxMCBtaWwuIEEgbWFpb3IgODE3IG1pbC4gRW0gbcOpZGlhLCBwb3IgZXN0YWRvIGVtIDIwMTksIGZvcmFtIDEzMiBtaWwgY3JpbWVzIGNvbnRyYSBhIG11bGhlci4NCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YT1kZikgKw0KICBnZW9tX2NvbChtYXBwaW5nID0gYWVzKHg9bm9tZSwgeT12YWxvcikpICsNCiAgeGxhYihsYWJlbD0iRXN0YWRvcyIpICsNCiAgeWxhYihsYWJlbD0iVmlvbMOqbmNpYSBGw61zaWNhIChNaWwgcGVzc29hcykiKSArDQogIGxhYnModGl0bGUgPSAiQ3JpbWVzIGNvbnRyYSBhIGEgbXVsaGVyIGVtIDIwMTkgcG9yIGVzdGFkbyBicmFzaWxlaXJvLiIpICsNCiAgdGhlbWVfbWluaW1hbCgpDQpgYGANCkNvbmZvcm1lIG9zIGRhZG9zLCBvcyBjcmltZXMgY29udHJhIGEgbXVsaGVyIGVtIDIwMTkgbm8gZXN0YWRvIGRlIFPDo28gUGF1bG8gZm9yYW0gbWFpb3JlcyBkbyBxdWUgZW0gb3V0cm9zIGVzdGFkb3MuIFPDsyBlbSBzw6NvIFBhdWxvLCBmb3JhbSA4MDAgbWlsIG11bGhlcmVzIHbDrXRpbWFzIGRlIHZpb2zDqm5jaWEuDQoNCmBgYHtyfQ0KZGZbInJlZ2lhbyJdIDwtIGMoIk5vcmRlc3RlIiwgIk5vcnRlIiwgIk5vcnRlIiwgIk5vcmRlc3RlIiwgIk5vcmRlc3RlIiwgIkNlbnRyby1PZXN0ZSIsICJTdWRlc3RlIiwgIkNlbnRyby1PZXN0ZSIsICJOb3JkZXN0ZSIsIkNlbnRyby1PZXN0ZSIsICJDZW50cm8tT2VzdGUiLCAiU3VkZXN0ZSIsICJTdWwiLCAiTm9yZGVzdGUiLCAiU3VsIiwgIk5vcmRlc3RlIiwgIk5vcmRlc3RlIiwgIlN1ZGVzdGUiLCAiTm9yZGVzdGUiLCAiU3VsIiwgIk5vcnRlIiwgIlN1bCIsICJTdWRlc3RlIiwgIk5vcmRlc3RlIiwgIk5vcnRlIiwgIk5vcnRlIiwgIk5vcnRlIikNCg0KZGZfZ3JwX3JlZ2lhbyA9IGRmICU+JSBncm91cF9ieShyZWdpYW8pICU+JQ0KICBzdW1tYXJpc2UoY3JpbWVzPXN1bSh2YWxvcikpDQoNCmdncGxvdChkYXRhPWRmX2dycF9yZWdpYW8sIGFlcyh4PXJlZ2lhbywgeT1jcmltZXMpKSArIA0KICBnZW9tX2NvbCgpICsgDQogIHhsYWIoIlJlZ2nDo28iKSArDQogIHlsYWIoIlZpb2zDqm5jaWEgRsOtc2ljYSAoTWlsIHBlc3NvYXMpIikgKw0KICBsYWJzKA0KICAgIHRpdGxlID0gIkNyaW1lcyBjb250cmEgYSBtdWxoZXIgZW0gMjAxOSBhZ3J1cGFkbyBwb3IgcmVnacOjby4iDQogICkgKyANCiAgdGhlbWVfbWluaW1hbCgpDQpgYGANCg0KQ29uZm9ybWUgZGFkb3MgYSByZWdpw6NvIGJyYXNpbGVpcmEgcXVlIHRldmUgYSBtYWlvciBxdWFudGlkYWRlIGRlIGNyaW1lcyBjb250cmEgYSBtdWxoZXIgZW0gMjAxOSBmb2kgYSByZWdpw6NvIHN1ZGVzdGUuDQoNCg0KYGBge3J9DQojIENhcnJlZ2FyIG9zIGRhZG9zIG5vdmFtZW50ZQ0KZGYgPSByZWFkX2NzdignZGF0YS92aW9sZW5jaWEuY3N2JykNCg0KIyBDYXJyZWdhciBvIHNoYXBlZmlsZSBkbyBCcmFzaWwNCmJyYXNpbCA8LSBuZV9jb3VudHJpZXMoY291bnRyeSA9ICJicmF6aWwiLCByZXR1cm5jbGFzcyA9ICJzZiIpDQoNCiMgQ2FycmVnYXIgbyBzaGFwZWZpbGUgZGFzIHJlZ2nDtWVzIGRvIEJyYXNpbA0KcmVnaW9lc19icmFzaWwgPC0gbmVfc3RhdGVzKGNvdW50cnkgPSAiYnJhemlsIiwgcmV0dXJuY2xhc3MgPSAic2YiKQ0KDQojIENyaWFyIGRhZG9zIGZpY3TDrWNpb3MNCmRhZG9zIDwtIGRhdGEuZnJhbWUocmVnaWFvID0gcmVnaW9lc19icmFzaWwkcmVnaW9uLCBkZikNCg0KIyBVbmlyIG9zIGRhZG9zIGRhcyByZWdpw7VlcyBjb20gb3MgZGFkb3MgZmljdMOtY2lvcw0KcmVnaW9lc19kYWRvcyA8LSBtZXJnZShyZWdpb2VzX2JyYXNpbCwgZGFkb3MsIGJ5LnggPSAicG9zdGFsIiwgYnkueSA9ICJub21lIikNCg0KIyBQbG90YXIgbyBncsOhZmljbw0KZ2dwbG90KCkgKw0KICBnZW9tX3NmKGRhdGEgPSBicmFzaWwsIGZpbGwgPSAibGlnaHRncmF5IiwgY29sb3IgPSAiYmxhY2siKSArDQogIGdlb21fc2YoZGF0YSA9IHJlZ2lvZXNfZGFkb3MsIGFlcyhmaWxsID0gdmFsb3IpLCBjb2xvciA9ICJibGFjayIpICsNCiAgc2NhbGVfZmlsbF92aXJpZGlzX2MobmFtZSA9ICJDcmltZXMiKSArDQogIGxhYnMoDQogICAgdGl0bGUgPSAiQ3JpbWVzIGNvbnRyYSBhIG11bGhlciBlbSAyMDE5IGFncnVwYWRvIHBvciByZWdpw6NvLiINCiAgKSArIA0KICB0aGVtZV9taW5pbWFsKCkNCmBgYA0KDQpDb25mb3JtZSBvcyBkYWRvcyBzw6NvIHBhdWxvLCBuYSByZWdpw6NvIHN1ZGVzdGUgZSBuYSByZWdpw6NvIGFvIHJlZG9yIGRlIFPDo28gUGF1bG8sIGZvcmFtIG9zIGVzdGFkb3MgY29tIG1haXMgdmlvbMOqbmNpYSBjb250cmEgYSBtdWxoZXIgZW0gMjAxOS4gSsOhIGEgUmVnacOjbyBub3J0ZSBhIG1lbm9yIHF1YW50aWRhZGUgZGUgY3JpbWVzLg0K