Set working directory and read file

setwd("/Users/annapeterson/Desktop/Classes/GEOG6000/Lab10")
boston = st_read("/Users/annapeterson/Desktop/Classes/GEOG6000/lab10/boston.shp",
                 quiet = TRUE)

Mapping House Prices

Setting up neighborhood structure and spatial weight matrix

boston$log_CMEDV = log(boston$CMEDV)
boston_nbq = poly2nb(boston)
boston_listw = nb2listw(boston_nbq)
## Warning in st_centroid.sf(boston): st_centroid assumes attributes are constant
## over geometries of x

Plot of House Prices Linear Regression Model

I chose to compare: industry, crime, socioeconomic status, and nitric oxide levels.

Prep data

boston$l_crime = log(boston$CRIM)
boston$l_LSTAT = log(boston$LSTAT)
boston$l_nox = log(boston$NOX)

Linear model

boston_lm = lm(log_CMEDV ~ l_crime + l_LSTAT + l_nox + INDUS, data = boston)
summary(boston_lm)
## 
## Call:
## lm(formula = log_CMEDV ~ l_crime + l_LSTAT + l_nox + INDUS, data = boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.89785 -0.13891 -0.00201  0.13437  0.90420 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.401727   0.091451  48.132  < 2e-16 ***
## l_crime     -0.033958   0.008308  -4.087 5.08e-05 ***
## l_LSTAT     -0.516041   0.021873 -23.593  < 2e-16 ***
## l_nox        0.228824   0.096364   2.375   0.0179 *  
## INDUS       -0.002745   0.002491  -1.102   0.2711    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2256 on 501 degrees of freedom
## Multiple R-squared:  0.6972, Adjusted R-squared:  0.6948 
## F-statistic: 288.4 on 4 and 501 DF,  p-value: < 2.2e-16

Spatial Autocorrelation on Residuals

boston_moran = moran.mc(residuals(boston_lm), 
                        listw = boston_listw, 
                        nsim = 999,
                        alternative = "greater")
boston_moran
## 
##  Monte-Carlo simulation of Moran I
## 
## data:  residuals(boston_lm) 
## weights: boston_listw  
## number of simulations + 1: 1000 
## 
## statistic = 0.52287, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater

The p-value is significant (p = 0.001) and a large statistic (0.523) so we can reject the null. This leads me to the assumption that there is spatial autocorrelation in our residuals.

Spatial Regression Model

I’m using spatial filtering and I seriously thought I’d leave eigenvectors in my geophysics degree hahahah. I think I could also use Lagrange Multipliers to determine if the spatial error is responsible for the autocorrelation. I figured since I did that in the previous lab, it would be good practice to try spatial filtering instead. Maybe I’ve misintrepreted its use so please correct me if I have these mixed up.

boston_sf = SpatialFiltering(boston_lm, 
                             nb = boston_nbq,
                             style = "C",
                             alpha = 0.25,
                             ExactEV = FALSE,
                             data = boston)
boston_sf
##    Step SelEvec       Eval         MinMi    ZMinMi       Pr(ZI)        R2
## 0     0       0 0.00000000  0.4896362700 19.326222 3.232368e-83 0.6972148
## 1     1       7 1.01976116  0.4498779811 17.938340 5.919767e-72 0.7183388
## 2     2       4 1.05595298  0.4244771353 17.114182 1.163385e-65 0.7296685
## 3     3       2 1.08892867  0.3990835858 16.293918 1.090166e-59 0.7396196
## 4     4      32 0.78285626  0.3737948378 15.389422 1.927462e-53 0.7557167
## 5     5       5 1.04657625  0.3493298198 14.581540 3.681195e-48 0.7642881
## 6     6      17 0.91138421  0.3312103496 13.985240 1.918282e-44 0.7716496
## 7     7      26 0.82434374  0.3147100720 13.430103 4.028529e-41 0.7790429
## 8     8      24 0.84263531  0.2977183493 12.857417 7.814409e-38 0.7859328
## 9     9       1 1.10200225  0.2815984044 12.381431 3.294177e-35 0.7901390
## 10   10      34 0.75990795  0.2652377927 11.810447 3.447244e-32 0.7970799
## 11   11      27 0.81838257  0.2487065891 11.243033 2.506211e-29 0.8029683
## 12   12      28 0.81072471  0.2324894806 10.684470 1.203347e-26 0.8084942
## 13   13      15 0.93758388  0.2207091225 10.331850 5.057587e-25 0.8116412
## 14   14      39 0.72128688  0.2092026374  9.944024 2.677864e-23 0.8158737
## 15   15      20 0.88217580  0.1973889194  9.574645 1.022079e-21 0.8190501
## 16   16      33 0.76432411  0.1855425786  9.178597 4.367440e-20 0.8227538
## 17   17      21 0.86490095  0.1732409123  8.781989 1.606084e-18 0.8259062
## 18   18       9 0.98964053  0.1628175180  8.487154 2.117598e-17 0.8281009
## 19   19       3 1.06422280  0.1524737629  8.209926 2.213257e-16 0.8300511
## 20   20       8 1.00698727  0.1429157578  7.950968 1.850603e-15 0.8319310
## 21   21      22 0.85973178  0.1334705523  7.664660 1.793059e-14 0.8341168
## 22   22      31 0.78832267  0.1241954557  7.370544 1.699327e-13 0.8364335
## 23   23      11 0.97301135  0.1148022422  7.106080 1.193852e-12 0.8382238
## 24   24      46 0.67437647  0.1059041016  6.805127 1.009599e-11 0.8407560
## 25   25      13 0.95281777  0.0968899706  6.549322 5.779882e-11 0.8424331
## 26   26      35 0.75599917  0.0885398524  6.283693 3.306231e-10 0.8444043
## 27   27      63 0.55909757  0.0805691038  6.001333 1.957037e-09 0.8469960
## 28   28     104 0.34076882  0.0736949595  5.735656 9.713589e-09 0.8509341
## 29   29      10 0.98793676  0.0667899731  5.572382 2.512794e-08 0.8520515
## 30   30      65 0.54648673  0.0604311216  5.356994 8.461776e-08 0.8539871
## 31   31     109 0.31881220  0.0547457718  5.139829 2.749887e-07 0.8571308
## 32   32      82 0.45322663  0.0488762386  4.932798 8.105980e-07 0.8592046
## 33   33      75 0.49287049  0.0430599101  4.733740 2.204205e-06 0.8610252
## 34   34      84 0.44188320  0.0371815737  4.525164 6.034866e-06 0.8630438
## 35   35      95 0.38070448  0.0313324511  4.310157 1.631385e-05 0.8653367
## 36   36      70 0.51697397  0.0256567494  4.120960 3.772966e-05 0.8668924
## 37   37      81 0.45826403  0.0205552467  3.949054 7.846070e-05 0.8684437
## 38   38      16 0.91758361  0.0155572879  3.849040 1.185815e-04 0.8691727
## 39   39      59 0.58615433  0.0105308852  3.697228 2.179663e-04 0.8703151
## 40   40      45 0.68548530  0.0054426677  3.556654 3.756079e-04 0.8712854
## 41   41     101 0.35215298  0.0002866169  3.368322 7.562722e-04 0.8731715
## 42   42       6 1.02898787 -0.0046396103  3.287167 1.012010e-03 0.8737760
## 43   43      25 0.83773459 -0.0093519643  3.184700 1.449039e-03 0.8744781
## 44   44      18 0.90304794 -0.0140554507  3.092393 1.985495e-03 0.8751219
## 45   45      93 0.39144335 -0.0185922067  2.934601 3.339763e-03 0.8765036
## 46   46      38 0.73006172 -0.0228945863  2.833374 4.605944e-03 0.8772092
## 47   47      68 0.52901479 -0.0271270839  2.707103 6.787319e-03 0.8781437
## 48   48      23 0.84794127 -0.0310977371  2.637860 8.343110e-03 0.8786942
## 49   49     123 0.25392710 -0.0351391419  2.485342 1.294271e-02 0.8803901
## 50   50      41 0.71048089 -0.0391669034  2.392848 1.671815e-02 0.8810328
## 51   51     119 0.26690194 -0.0430305171  2.250225 2.443466e-02 0.8825158
## 52   52      43 0.69500963 -0.0467783223  2.168011 3.015784e-02 0.8831094
## 53   53      12 0.96415014 -0.0505515193  2.123456 3.371566e-02 0.8835441
## 54   54     145 0.16665892 -0.0541588617  1.980296 4.767023e-02 0.8854465
## 55   55     171 0.08009749 -0.0579036289  1.821582 6.851837e-02 0.8885550
## 56   56      48 0.66613026 -0.0615362965  1.739901 8.187648e-02 0.8891114
## 57   57      96 0.37509701 -0.0651572681  1.621581 1.048931e-01 0.8900234
## 58   58      42 0.69961188 -0.0688145075  1.542865 1.228634e-01 0.8905468
## 59   59      53 0.62433833 -0.0723141949  1.461439 1.438950e-01 0.8910967
## 60   60     137 0.20528165 -0.0758763613  1.325706 1.849372e-01 0.8924764
## 61   61     122 0.25496869 -0.0792814257  1.203522 2.287743e-01 0.8935718
## 62   62      77 0.47524095 -0.0827020650  1.107039 2.682771e-01 0.8942243
##         gamma
## 0   0.0000000
## 1  -1.3334797
## 2   0.9765790
## 3  -0.9152345
## 4   1.1640503
## 5   0.8494244
## 6   0.7871955
## 7  -0.7888885
## 8   0.7615628
## 9   0.5950332
## 10  0.7643742
## 11  0.7040428
## 12  0.6820255
## 13 -0.5146911
## 14 -0.5968864
## 15 -0.5170967
## 16  0.5583571
## 17 -0.5151365
## 18  0.4298215
## 19  0.4051692
## 20  0.3978012
## 21  0.4289446
## 22  0.4416039
## 23 -0.3882003
## 24  0.4616900
## 25  0.3757276
## 26 -0.4073471
## 27 -0.4670815
## 28 -0.5757622
## 29 -0.3066933
## 30 -0.4036452
## 31  0.5144176
## 32 -0.4178211
## 33  0.3914732
## 34 -0.4122170
## 35  0.4393294
## 36  0.3618691
## 37  0.3613733
## 38 -0.2477084
## 39 -0.3101036
## 40  0.2857970
## 41  0.3984573
## 42 -0.2255702
## 43  0.2431220
## 44  0.2327870
## 45 -0.3410384
## 46  0.2437221
## 47 -0.2804701
## 48  0.2152529
## 49  0.3778388
## 50  0.2325867
## 51 -0.3533256
## 52  0.2235303
## 53 -0.1912817
## 54  0.4001803
## 55  0.5115327
## 56  0.2164089
## 57  0.2770783
## 58 -0.2099055
## 59 -0.2151389
## 60 -0.3408008
## 61  0.3036525
## 62 -0.2343610


Plotting the eigenvectors Apply filter to the linear model

E_sel = fitted(boston_sf)
lm_sf = lm(log_CMEDV ~ l_crime + l_LSTAT + l_nox + INDUS + E_sel, 
           data = boston)
summary(lm_sf)
## 
## Call:
## lm(formula = log_CMEDV ~ l_crime + l_LSTAT + l_nox + INDUS + 
##     E_sel, data = boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.54047 -0.08004  0.00351  0.08245  0.56076 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.401727   0.057743  76.230  < 2e-16 ***
## l_crime     -0.033958   0.005246  -6.473 2.57e-10 ***
## l_LSTAT     -0.516041   0.013811 -37.365  < 2e-16 ***
## l_nox        0.228824   0.060845   3.761 0.000192 ***
## INDUS       -0.002745   0.001573  -1.745 0.081713 .  
## E_selvec7   -1.333480   0.142416  -9.363  < 2e-16 ***
## E_selvec4    0.976579   0.142416   6.857 2.39e-11 ***
## E_selvec2   -0.915235   0.142416  -6.426 3.41e-10 ***
## E_selvec32   1.164050   0.142416   8.174 3.24e-15 ***
## E_selvec5    0.849424   0.142416   5.964 5.06e-09 ***
## E_selvec17   0.787196   0.142416   5.527 5.58e-08 ***
## E_selvec26  -0.788888   0.142416  -5.539 5.24e-08 ***
## E_selvec24   0.761563   0.142416   5.347 1.44e-07 ***
## E_selvec1    0.595033   0.142416   4.178 3.55e-05 ***
## E_selvec34   0.764374   0.142416   5.367 1.30e-07 ***
## E_selvec27   0.704043   0.142416   4.944 1.09e-06 ***
## E_selvec28   0.682026   0.142416   4.789 2.30e-06 ***
## E_selvec15  -0.514691   0.142416  -3.614 0.000336 ***
## E_selvec39  -0.596886   0.142416  -4.191 3.36e-05 ***
## E_selvec20  -0.517097   0.142416  -3.631 0.000316 ***
## E_selvec33   0.558357   0.142416   3.921 0.000102 ***
## E_selvec21  -0.515136   0.142416  -3.617 0.000333 ***
## E_selvec9    0.429821   0.142416   3.018 0.002692 ** 
## E_selvec3    0.405169   0.142416   2.845 0.004649 ** 
## E_selvec8    0.397801   0.142416   2.793 0.005447 ** 
## E_selvec22   0.428945   0.142416   3.012 0.002746 ** 
## E_selvec31   0.441604   0.142416   3.101 0.002054 ** 
## E_selvec11  -0.388200   0.142416  -2.726 0.006671 ** 
## E_selvec46   0.461690   0.142416   3.242 0.001278 ** 
## E_selvec13   0.375728   0.142416   2.638 0.008630 ** 
## E_selvec35  -0.407347   0.142416  -2.860 0.004435 ** 
## E_selvec63  -0.467081   0.142416  -3.280 0.001122 ** 
## E_selvec104 -0.575762   0.142416  -4.043 6.24e-05 ***
## E_selvec10  -0.306693   0.142416  -2.154 0.031823 *  
## E_selvec65  -0.403645   0.142416  -2.834 0.004805 ** 
## E_selvec109  0.514418   0.142416   3.612 0.000339 ***
## E_selvec82  -0.417821   0.142416  -2.934 0.003524 ** 
## E_selvec75   0.391473   0.142416   2.749 0.006228 ** 
## E_selvec84  -0.412217   0.142416  -2.894 0.003987 ** 
## E_selvec95   0.439329   0.142416   3.085 0.002165 ** 
## E_selvec70   0.361869   0.142416   2.541 0.011399 *  
## E_selvec81   0.361373   0.142416   2.537 0.011511 *  
## E_selvec16  -0.247708   0.142416  -1.739 0.082678 .  
## E_selvec59  -0.310104   0.142416  -2.177 0.029979 *  
## E_selvec45   0.285797   0.142416   2.007 0.045386 *  
## E_selvec101  0.398457   0.142416   2.798 0.005371 ** 
## E_selvec6   -0.225570   0.142416  -1.584 0.113941    
## E_selvec25   0.243122   0.142416   1.707 0.088506 .  
## E_selvec18   0.232787   0.142416   1.635 0.102859    
## E_selvec93  -0.341038   0.142416  -2.395 0.017054 *  
## E_selvec38   0.243722   0.142416   1.711 0.087725 .  
## E_selvec68  -0.280470   0.142416  -1.969 0.049539 *  
## E_selvec23   0.215253   0.142416   1.511 0.131397    
## E_selvec123  0.377839   0.142416   2.653 0.008266 ** 
## E_selvec41   0.232587   0.142416   1.633 0.103154    
## E_selvec119 -0.353326   0.142416  -2.481 0.013477 *  
## E_selvec43   0.223530   0.142416   1.570 0.117238    
## E_selvec12  -0.191282   0.142416  -1.343 0.179927    
## E_selvec145  0.400180   0.142416   2.810 0.005177 ** 
## E_selvec171  0.511533   0.142416   3.592 0.000365 ***
## E_selvec48   0.216409   0.142416   1.520 0.129343    
## E_selvec96   0.277078   0.142416   1.946 0.052346 .  
## E_selvec42  -0.209906   0.142416  -1.474 0.141228    
## E_selvec53  -0.215139   0.142416  -1.511 0.131601    
## E_selvec137 -0.340801   0.142416  -2.393 0.017131 *  
## E_selvec122  0.303653   0.142416   2.132 0.033549 *  
## E_selvec77  -0.234361   0.142416  -1.646 0.100560    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1424 on 439 degrees of freedom
## Multiple R-squared:  0.8942, Adjusted R-squared:  0.8783 
## F-statistic: 56.23 on 66 and 439 DF,  p-value: < 2.2e-16

Re-run moran test then use anova to see which one is the best model

moran.test(residuals(lm_sf), boston_listw)
## 
##  Moran I test under randomisation
## 
## data:  residuals(lm_sf)  
## weights: boston_listw    
## 
## Moran I statistic standard deviate = -3.2049, p-value = 0.9993
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic       Expectation          Variance 
##     -0.0882748056     -0.0019801980      0.0007249807
anova(boston_lm, lm_sf)
## Analysis of Variance Table
## 
## Model 1: log_CMEDV ~ l_crime + l_LSTAT + l_nox + INDUS
## Model 2: log_CMEDV ~ l_crime + l_LSTAT + l_nox + INDUS + E_sel
##   Res.Df     RSS Df Sum of Sq      F    Pr(>F)    
## 1    501 25.4877                                  
## 2    439  8.9039 62    16.584 13.188 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value is incredibly small which suggests that spatial filtering has improved the accuracy of our model.

Goodness-of-fit

summary(lm_sf)
## 
## Call:
## lm(formula = log_CMEDV ~ l_crime + l_LSTAT + l_nox + INDUS + 
##     E_sel, data = boston)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.54047 -0.08004  0.00351  0.08245  0.56076 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.401727   0.057743  76.230  < 2e-16 ***
## l_crime     -0.033958   0.005246  -6.473 2.57e-10 ***
## l_LSTAT     -0.516041   0.013811 -37.365  < 2e-16 ***
## l_nox        0.228824   0.060845   3.761 0.000192 ***
## INDUS       -0.002745   0.001573  -1.745 0.081713 .  
## E_selvec7   -1.333480   0.142416  -9.363  < 2e-16 ***
## E_selvec4    0.976579   0.142416   6.857 2.39e-11 ***
## E_selvec2   -0.915235   0.142416  -6.426 3.41e-10 ***
## E_selvec32   1.164050   0.142416   8.174 3.24e-15 ***
## E_selvec5    0.849424   0.142416   5.964 5.06e-09 ***
## E_selvec17   0.787196   0.142416   5.527 5.58e-08 ***
## E_selvec26  -0.788888   0.142416  -5.539 5.24e-08 ***
## E_selvec24   0.761563   0.142416   5.347 1.44e-07 ***
## E_selvec1    0.595033   0.142416   4.178 3.55e-05 ***
## E_selvec34   0.764374   0.142416   5.367 1.30e-07 ***
## E_selvec27   0.704043   0.142416   4.944 1.09e-06 ***
## E_selvec28   0.682026   0.142416   4.789 2.30e-06 ***
## E_selvec15  -0.514691   0.142416  -3.614 0.000336 ***
## E_selvec39  -0.596886   0.142416  -4.191 3.36e-05 ***
## E_selvec20  -0.517097   0.142416  -3.631 0.000316 ***
## E_selvec33   0.558357   0.142416   3.921 0.000102 ***
## E_selvec21  -0.515136   0.142416  -3.617 0.000333 ***
## E_selvec9    0.429821   0.142416   3.018 0.002692 ** 
## E_selvec3    0.405169   0.142416   2.845 0.004649 ** 
## E_selvec8    0.397801   0.142416   2.793 0.005447 ** 
## E_selvec22   0.428945   0.142416   3.012 0.002746 ** 
## E_selvec31   0.441604   0.142416   3.101 0.002054 ** 
## E_selvec11  -0.388200   0.142416  -2.726 0.006671 ** 
## E_selvec46   0.461690   0.142416   3.242 0.001278 ** 
## E_selvec13   0.375728   0.142416   2.638 0.008630 ** 
## E_selvec35  -0.407347   0.142416  -2.860 0.004435 ** 
## E_selvec63  -0.467081   0.142416  -3.280 0.001122 ** 
## E_selvec104 -0.575762   0.142416  -4.043 6.24e-05 ***
## E_selvec10  -0.306693   0.142416  -2.154 0.031823 *  
## E_selvec65  -0.403645   0.142416  -2.834 0.004805 ** 
## E_selvec109  0.514418   0.142416   3.612 0.000339 ***
## E_selvec82  -0.417821   0.142416  -2.934 0.003524 ** 
## E_selvec75   0.391473   0.142416   2.749 0.006228 ** 
## E_selvec84  -0.412217   0.142416  -2.894 0.003987 ** 
## E_selvec95   0.439329   0.142416   3.085 0.002165 ** 
## E_selvec70   0.361869   0.142416   2.541 0.011399 *  
## E_selvec81   0.361373   0.142416   2.537 0.011511 *  
## E_selvec16  -0.247708   0.142416  -1.739 0.082678 .  
## E_selvec59  -0.310104   0.142416  -2.177 0.029979 *  
## E_selvec45   0.285797   0.142416   2.007 0.045386 *  
## E_selvec101  0.398457   0.142416   2.798 0.005371 ** 
## E_selvec6   -0.225570   0.142416  -1.584 0.113941    
## E_selvec25   0.243122   0.142416   1.707 0.088506 .  
## E_selvec18   0.232787   0.142416   1.635 0.102859    
## E_selvec93  -0.341038   0.142416  -2.395 0.017054 *  
## E_selvec38   0.243722   0.142416   1.711 0.087725 .  
## E_selvec68  -0.280470   0.142416  -1.969 0.049539 *  
## E_selvec23   0.215253   0.142416   1.511 0.131397    
## E_selvec123  0.377839   0.142416   2.653 0.008266 ** 
## E_selvec41   0.232587   0.142416   1.633 0.103154    
## E_selvec119 -0.353326   0.142416  -2.481 0.013477 *  
## E_selvec43   0.223530   0.142416   1.570 0.117238    
## E_selvec12  -0.191282   0.142416  -1.343 0.179927    
## E_selvec145  0.400180   0.142416   2.810 0.005177 ** 
## E_selvec171  0.511533   0.142416   3.592 0.000365 ***
## E_selvec48   0.216409   0.142416   1.520 0.129343    
## E_selvec96   0.277078   0.142416   1.946 0.052346 .  
## E_selvec42  -0.209906   0.142416  -1.474 0.141228    
## E_selvec53  -0.215139   0.142416  -1.511 0.131601    
## E_selvec137 -0.340801   0.142416  -2.393 0.017131 *  
## E_selvec122  0.303653   0.142416   2.132 0.033549 *  
## E_selvec77  -0.234361   0.142416  -1.646 0.100560    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1424 on 439 degrees of freedom
## Multiple R-squared:  0.8942, Adjusted R-squared:  0.8783 
## F-statistic: 56.23 on 66 and 439 DF,  p-value: < 2.2e-16

I stated above that our p-value is significant and that it is incredibly small comparatively to our original linear model. Also our r-squared is 0.878 which is indicative of a strong relationship between the dependent variables and the linear model.

Variables influencing house prices I originally chose these variables because I know I wouldn’t want to live in a high crime area with a lot of industry. We would think being in an industrial area we would also see high rates of nitric oxide with semi traffic. Looking at the actual statistical data, we can say:

Crime: Has a negative relationship with house value and has a small p-value than the others so maybe the relationship is stronger as than industry and pollution variables.

Industry: Negative relationship and has a p-value about 0.05 which means that it does not have an impact on house value.

Nitric Oxide: Positive relationship and small p-value which has an impact on house value. We could intrepret this as maybe being close to a lot of traffic like highways so not only are you getting pollution, but also road noise. That would be interesting to add.

Lower Status Population: Negative relationship and very small p-value which means it has an impact on house value.

Conclusion I don’t think this is adequate because there’s a ton more factors involved in determining house values and I think we could get a better fitting model with more variables like road noise, carbon dioxide, school ratings, and house sizes. But it is adequate enough to show that there is a relationship between these.