R Markdown

Case study analysis on ‘mtcars’ dataset.

Motor Trend Car Road Tests

Description:

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 11 aspects of automobile design and performance for 32 automobiles (1973–74 models).

A data frame with 32 observations on 11 (numeric) variables.

[, 1] mpg Miles/(US) gallon

[, 2] cyl Number of cylinders

[, 3] disp Displacement (cu.in.)

[, 4] hp Gross horsepower

[, 5] drat Rear axle ratio

[, 6] wt Weight (1000 lbs)

[, 7] qsec 1/4 mile time

[, 8] vs Engine (0 = V-shaped, 1 = straight)

[, 9] am Transmission (0 = automatic, 1 = manual)

[,10] gear Number of forward gears

[,11] carb Number of carburetors

 data=mtcars


 View(data)
 

 str(data)
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
 mpg <- mtcars$mpg
 
 
 cyl <- mtcars$cyl
 model1 <- lm(mpg ~ cyl)
 model1
## 
## Call:
## lm(formula = mpg ~ cyl)
## 
## Coefficients:
## (Intercept)          cyl  
##      37.885       -2.876
 predict(model1, newdata=data.frame(cyl=8))
##        1 
## 14.87826
 am <- mtcars$am
 model2 <- lm(mpg~cyl+am)
 model2
## 
## Call:
## lm(formula = mpg ~ cyl + am)
## 
## Coefficients:
## (Intercept)          cyl           am  
##      34.522       -2.501        2.567

THE END