pacman::p_load(pacman,dplyr,GGally,ggplot2,ggthemes,ggvis,httr,lubridate,plotly,rio,rmarkdown,shiny,stringr,tidyr,tidyverse,lattice,caret,pls,MASS,yarrr,psych,ggcorrplot,GGally,CCA,CCP,rpart,rpart.plot)
library(tidyverse)
library(rpart)
library(rpart.plot)
library(caret)
library("rio")
A partir de las 16 análisis de las muestras en la columna polar, se generaron 8 “réplicas” de cada análisis añadiendo un ruido blanco calculado con la función rnorm(n,mean=0,sd=1)0.01valores de tal manera que se generen pequeñas variaciones a los mismos.
Al final tenemos un juego de 144 filas=8*16+16
Estos datos se guardaron en el excel=CCADatosTest.xlsx
mm1<-import("CCADatosTest.xlsx")
atributo<-mm1["Aroma"]
mm<-mm1[,1:87]
mm["Aroma"]<-round(atributo,1)
## Se clasifican cada muestra de acuerdo al valor de la columna Aroma como: Bajo,Medi,Alto,Excelente
d<-(max(mm$Aroma)-min(mm$Aroma))/4
d1<-min(mm$Aroma)+d
d2<-min(mm$Aroma)+d*2
d3<-min(mm$Aroma)+d*3
breakpoints=seq(min(mm$Aroma),max(mm$Aroma),d)
breakpoints<-c(-Inf, d1, d2,d3, Inf)
classified<-cut(mm$Aroma,breaks=breakpoints,labels=c("Bajo","Medio","Alto","Excelente"))
mm$Aroma<-factor(classified)
## Se realizaran 100 corridas del algoritmo
for(i in 1:10){
print(paste0("CORRIDA ",i))
training2 <- sample_frac(mm, .7) ## conjunto de entrenamiento 70% de las muestras escogidas al azar
test2 <- setdiff(mm, training2) ## Conjunto de prueba, el remanente de las muestras
arbol_2 <- rpart(formula = Aroma ~ ., data = training2,control = rpart.control(cp = 0.06, xval = 35, minsplit = 5))
prediccion_2 <- predict(arbol_2, newdata = test2, type = "class")
rpart.plot(arbol_2)
# Cálculo de la matriz de confución
c<-confusionMatrix(prediccion_2, test2[["Aroma"]])
print(c)
# Nombre de las variables utilizadas en el el árbol de decisión
v<-arbol_2$frame$var[arbol_2$frame$var != "<leaf>"]
print(paste0("VARIABLES:",paste(v,collapse=",")))
new_string <- paste(v, collapse = "*")
df2<-data.frame(Aroma=test2$Aroma,pred=prediccion_2)
f<-paste0("Aroma~",new_string) %>% as.formula #Calcula fórmula de regresión
metodo<-lm(f,data=mm1)
#summary(metodo)
plot(metodo$fitted.values,mm1$Aroma,xlim=c(7.8,9.0),ylim=c(7.8,9.0),main=paste0("VARIABLES:",paste(v,collapse=",")))
abline(0,1,col="blue")
print(summary(metodo))
print("--------------------------------------------------------------------------------------")
}
## [1] "CORRIDA 1"
## Confusion Matrix and Statistics
##
## Reference
## Prediction Bajo Medio Alto Excelente
## Bajo 1 0 0 0
## Medio 2 11 3 0
## Alto 1 2 16 3
## Excelente 0 0 2 2
##
## Overall Statistics
##
## Accuracy : 0.6977
## 95% CI : (0.5387, 0.8282)
## No Information Rate : 0.4884
## P-Value [Acc > NIR] : 0.004445
##
## Kappa : 0.516
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: Bajo Class: Medio Class: Alto Class: Excelente
## Sensitivity 0.25000 0.8462 0.7619 0.40000
## Specificity 1.00000 0.8333 0.7273 0.94737
## Pos Pred Value 1.00000 0.6875 0.7273 0.50000
## Neg Pred Value 0.92857 0.9259 0.7619 0.92308
## Prevalence 0.09302 0.3023 0.4884 0.11628
## Detection Rate 0.02326 0.2558 0.3721 0.04651
## Detection Prevalence 0.02326 0.3721 0.5116 0.09302
## Balanced Accuracy 0.62500 0.8397 0.7446 0.67368
## [1] "VARIABLES:A7,A78,A38,A8"
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.258575 -0.047685 0.001222 0.058135 0.195944
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.613e+02 4.050e+01 -3.983 0.000113 ***
## A7 1.183e+03 2.940e+02 4.023 9.77e-05 ***
## A78 2.482e+01 5.928e+00 4.188 5.20e-05 ***
## A38 2.140e+01 5.699e+00 3.756 0.000261 ***
## A8 2.551e+03 6.479e+02 3.936 0.000135 ***
## A7:A78 -1.726e+02 4.316e+01 -3.998 0.000107 ***
## A7:A38 -1.461e+02 4.147e+01 -3.522 0.000594 ***
## A78:A38 -3.147e+00 8.307e-01 -3.788 0.000233 ***
## A7:A8 -1.826e+04 4.679e+03 -3.901 0.000154 ***
## A78:A8 -3.707e+02 9.251e+01 -4.007 0.000104 ***
## A38:A8 -3.190e+02 9.034e+01 -3.531 0.000577 ***
## A7:A78:A38 2.143e+01 6.062e+00 3.535 0.000569 ***
## A7:A78:A8 2.639e+03 6.704e+02 3.936 0.000135 ***
## A7:A38:A8 2.245e+03 6.509e+02 3.448 0.000764 ***
## A78:A38:A8 4.645e+01 1.287e+01 3.611 0.000437 ***
## A7:A78:A38:A8 -3.249e+02 9.302e+01 -3.492 0.000658 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08905 on 128 degrees of freedom
## Multiple R-squared: 0.6995, Adjusted R-squared: 0.6643
## F-statistic: 19.86 on 15 and 128 DF, p-value: < 2.2e-16
##
## [1] "--------------------------------------------------------------------------------------"
## [1] "CORRIDA 2"
## Confusion Matrix and Statistics
##
## Reference
## Prediction Bajo Medio Alto Excelente
## Bajo 3 1 0 0
## Medio 2 6 1 0
## Alto 1 5 19 2
## Excelente 0 0 1 2
##
## Overall Statistics
##
## Accuracy : 0.6977
## 95% CI : (0.5387, 0.8282)
## No Information Rate : 0.4884
## P-Value [Acc > NIR] : 0.004445
##
## Kappa : 0.5088
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: Bajo Class: Medio Class: Alto Class: Excelente
## Sensitivity 0.50000 0.5000 0.9048 0.50000
## Specificity 0.97297 0.9032 0.6364 0.97436
## Pos Pred Value 0.75000 0.6667 0.7037 0.66667
## Neg Pred Value 0.92308 0.8235 0.8750 0.95000
## Prevalence 0.13953 0.2791 0.4884 0.09302
## Detection Rate 0.06977 0.1395 0.4419 0.04651
## Detection Prevalence 0.09302 0.2093 0.6279 0.06977
## Balanced Accuracy 0.73649 0.7016 0.7706 0.73718
## [1] "VARIABLES:A7,A38,A32,A60"
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37254 -0.04850 0.00803 0.05135 0.20848
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -55.124 69.387 -0.794 0.428
## A7 485.307 574.811 0.844 0.400
## A38 9.310 9.416 0.989 0.325
## A32 28.784 27.502 1.047 0.297
## A60 140.612 158.680 0.886 0.377
## A7:A38 -70.502 78.530 -0.898 0.371
## A7:A32 -217.242 231.057 -0.940 0.349
## A38:A32 -4.407 3.776 -1.167 0.245
## A7:A60 -987.373 1237.865 -0.798 0.427
## A38:A60 -22.041 21.987 -1.002 0.318
## A32:A60 -68.002 66.167 -1.028 0.306
## A7:A38:A32 33.085 31.915 1.037 0.302
## A7:A38:A60 155.708 173.155 0.899 0.370
## A7:A32:A60 474.834 516.814 0.919 0.360
## A38:A32:A60 10.862 9.243 1.175 0.242
## A7:A38:A32:A60 -76.602 72.925 -1.050 0.296
##
## Residual standard error: 0.08778 on 128 degrees of freedom
## Multiple R-squared: 0.708, Adjusted R-squared: 0.6738
## F-statistic: 20.69 on 15 and 128 DF, p-value: < 2.2e-16
##
## [1] "--------------------------------------------------------------------------------------"
## [1] "CORRIDA 3"
## Confusion Matrix and Statistics
##
## Reference
## Prediction Bajo Medio Alto Excelente
## Bajo 4 1 0 0
## Medio 3 9 2 1
## Alto 0 4 12 0
## Excelente 0 2 3 2
##
## Overall Statistics
##
## Accuracy : 0.6279
## 95% CI : (0.4673, 0.7702)
## No Information Rate : 0.3953
## P-Value [Acc > NIR] : 0.001726
##
## Kappa : 0.4629
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: Bajo Class: Medio Class: Alto Class: Excelente
## Sensitivity 0.57143 0.5625 0.7059 0.66667
## Specificity 0.97222 0.7778 0.8462 0.87500
## Pos Pred Value 0.80000 0.6000 0.7500 0.28571
## Neg Pred Value 0.92105 0.7500 0.8148 0.97222
## Prevalence 0.16279 0.3721 0.3953 0.06977
## Detection Rate 0.09302 0.2093 0.2791 0.04651
## Detection Prevalence 0.11628 0.3488 0.3721 0.16279
## Balanced Accuracy 0.77183 0.6701 0.7760 0.77083
## [1] "VARIABLES:A7,A38,A28,A29,A40"
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.233252 -0.035559 0.000377 0.043289 0.153485
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.785e+01 1.716e+02 -0.337 0.737
## A7 6.509e+02 1.612e+03 0.404 0.687
## A38 8.023e+00 2.492e+01 0.322 0.748
## A28 4.479e+02 1.367e+03 0.328 0.744
## A29 2.203e+03 3.243e+03 0.679 0.498
## A40 1.311e+02 2.384e+02 0.550 0.583
## A7:A38 -8.236e+01 2.297e+02 -0.359 0.721
## A7:A28 -3.918e+03 1.291e+04 -0.304 0.762
## A38:A28 -5.861e+01 2.016e+02 -0.291 0.772
## A7:A29 -1.918e+04 2.974e+04 -0.645 0.520
## A38:A29 -2.322e+02 4.691e+02 -0.495 0.622
## A28:A29 -1.432e+04 2.369e+04 -0.604 0.547
## A7:A40 -1.148e+03 2.292e+03 -0.501 0.617
## A38:A40 -1.717e+01 3.503e+01 -0.490 0.625
## A28:A40 -9.050e+02 1.992e+03 -0.454 0.650
## A29:A40 -3.394e+03 4.846e+03 -0.700 0.485
## A7:A38:A28 5.320e+02 1.871e+03 0.284 0.777
## A7:A38:A29 2.120e+03 4.275e+03 0.496 0.621
## A7:A28:A29 1.173e+05 2.194e+05 0.535 0.594
## A38:A28:A29 1.509e+03 3.441e+03 0.438 0.662
## A7:A38:A40 1.534e+02 3.298e+02 0.465 0.643
## A7:A28:A40 7.100e+03 1.936e+04 0.367 0.715
## A38:A28:A40 1.264e+02 2.950e+02 0.429 0.669
## A7:A29:A40 2.825e+04 4.446e+04 0.635 0.526
## A38:A29:A40 3.774e+02 7.041e+02 0.536 0.593
## A28:A29:A40 2.234e+04 3.642e+04 0.613 0.541
## A7:A38:A28:A29 -1.293e+04 3.167e+04 -0.408 0.684
## A7:A38:A28:A40 -1.019e+03 2.814e+03 -0.362 0.718
## A7:A38:A29:A40 -3.239e+03 6.428e+03 -0.504 0.615
## A7:A28:A29:A40 -1.741e+05 3.390e+05 -0.514 0.608
## A38:A28:A29:A40 -2.533e+03 5.294e+03 -0.478 0.633
## A7:A38:A28:A29:A40 2.031e+04 4.901e+04 0.414 0.679
##
## Residual standard error: 0.07613 on 112 degrees of freedom
## Multiple R-squared: 0.8078, Adjusted R-squared: 0.7546
## F-statistic: 15.19 on 31 and 112 DF, p-value: < 2.2e-16
##
## [1] "--------------------------------------------------------------------------------------"
## [1] "CORRIDA 4"
## Confusion Matrix and Statistics
##
## Reference
## Prediction Bajo Medio Alto Excelente
## Bajo 4 2 0 0
## Medio 0 5 1 0
## Alto 0 7 18 4
## Excelente 0 0 0 2
##
## Overall Statistics
##
## Accuracy : 0.6744
## 95% CI : (0.5146, 0.8092)
## No Information Rate : 0.4419
## P-Value [Acc > NIR] : 0.001777
##
## Kappa : 0.489
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: Bajo Class: Medio Class: Alto Class: Excelente
## Sensitivity 1.00000 0.3571 0.9474 0.33333
## Specificity 0.94872 0.9655 0.5417 1.00000
## Pos Pred Value 0.66667 0.8333 0.6207 1.00000
## Neg Pred Value 1.00000 0.7568 0.9286 0.90244
## Prevalence 0.09302 0.3256 0.4419 0.13953
## Detection Rate 0.09302 0.1163 0.4186 0.04651
## Detection Prevalence 0.13953 0.1395 0.6744 0.04651
## Balanced Accuracy 0.97436 0.6613 0.7445 0.66667
## [1] "VARIABLES:A7,A78,A8,A32,A60,A29"
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.17197 -0.03347 -0.00554 0.02865 0.15251
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.610e+03 4.124e+03 -0.390 0.697
## A7 7.154e+03 3.673e+04 0.195 0.846
## A78 2.584e+02 5.867e+02 0.440 0.661
## A8 3.135e+04 6.719e+04 0.467 0.642
## A32 4.771e+02 1.809e+03 0.264 0.793
## A60 1.183e+03 1.047e+04 0.113 0.910
## A29 1.737e+04 6.450e+04 0.269 0.788
## A7:A78 -1.369e+03 5.215e+03 -0.262 0.794
## A7:A8 -1.076e+05 5.578e+05 -0.193 0.848
## A78:A8 -4.686e+03 9.601e+03 -0.488 0.627
## A7:A32 -6.431e+02 1.629e+04 -0.039 0.969
## A78:A32 -8.160e+01 2.578e+02 -0.317 0.752
## A8:A32 -1.159e+04 2.935e+04 -0.395 0.694
## A7:A60 1.657e+04 9.369e+04 0.177 0.860
## A78:A60 -2.435e+02 1.476e+03 -0.165 0.869
## A8:A60 -7.229e+04 1.659e+05 -0.436 0.664
## A32:A60 -3.148e+01 4.694e+03 -0.007 0.995
## A7:A29 -8.837e+04 5.665e+05 -0.156 0.876
## A78:A29 -2.645e+03 9.125e+03 -0.290 0.773
## A8:A29 -6.072e+05 1.104e+06 -0.550 0.584
## A32:A29 -5.518e+03 2.810e+04 -0.196 0.845
## A60:A29 -7.519e+03 1.550e+05 -0.049 0.961
## A7:A78:A8 1.910e+04 7.964e+04 0.240 0.811
## A7:A78:A32 2.598e+02 2.317e+03 0.112 0.911
## A7:A8:A32 2.022e+04 2.457e+05 0.082 0.935
## A78:A8:A32 1.764e+03 4.195e+03 0.421 0.675
## A7:A78:A60 -1.445e+03 1.316e+04 -0.110 0.913
## A7:A8:A60 7.997e+04 1.384e+06 0.058 0.954
## A78:A8:A60 1.107e+04 2.339e+04 0.473 0.637
## A7:A32:A60 -1.243e+04 4.228e+04 -0.294 0.769
## A78:A32:A60 4.125e+01 6.636e+02 0.062 0.951
## A8:A32:A60 2.671e+04 7.426e+04 0.360 0.720
## A7:A78:A29 1.567e+04 8.014e+04 0.195 0.845
## A7:A8:A29 2.704e+06 8.938e+06 0.303 0.763
## A78:A8:A29 8.244e+04 1.577e+05 0.523 0.603
## A7:A32:A29 1.137e+04 2.482e+05 0.046 0.964
## A78:A32:A29 8.539e+02 3.985e+03 0.214 0.831
## A8:A32:A29 2.534e+05 4.842e+05 0.523 0.602
## A7:A60:A29 -2.636e+05 1.380e+06 -0.191 0.849
## A78:A60:A29 1.590e+03 2.166e+04 0.073 0.942
## A8:A60:A29 1.757e+06 2.513e+06 0.699 0.487
## A32:A60:A29 -1.377e+03 6.941e+04 -0.020 0.984
## A7:A78:A8:A32 -4.687e+03 3.510e+04 -0.134 0.894
## A7:A78:A8:A60 -2.245e+04 1.947e+05 -0.115 0.909
## A7:A78:A32:A60 1.332e+03 5.952e+03 0.224 0.823
## A7:A8:A32:A60 2.392e+04 6.226e+05 0.038 0.969
## A78:A8:A32:A60 -4.193e+03 1.048e+04 -0.400 0.690
## A7:A78:A8:A29 -3.863e+05 1.278e+06 -0.302 0.763
## A7:A78:A32:A29 -2.999e+03 3.521e+04 -0.085 0.932
## A7:A8:A32:A29 -9.228e+05 3.928e+06 -0.235 0.815
## A78:A8:A32:A29 -3.414e+04 6.919e+04 -0.493 0.623
## A7:A78:A60:A29 2.917e+04 1.929e+05 0.151 0.880
## A7:A8:A60:A29 -6.087e+06 2.061e+07 -0.295 0.769
## A78:A8:A60:A29 -2.431e+05 3.519e+05 -0.691 0.492
## A7:A32:A60:A29 1.743e+05 6.196e+05 0.281 0.779
## A78:A32:A60:A29 -3.716e+01 9.720e+03 -0.004 0.997
## A8:A32:A60:A29 -7.336e+05 1.129e+06 -0.650 0.518
## A7:A78:A8:A32:A60 1.859e+03 8.770e+04 0.021 0.983
## A7:A78:A8:A32:A29 1.313e+05 5.621e+05 0.234 0.816
## A7:A78:A8:A60:A29 8.919e+05 2.890e+06 0.309 0.758
## A7:A78:A32:A60:A29 -2.096e+04 8.680e+04 -0.242 0.810
## A7:A8:A32:A60:A29 2.052e+06 9.266e+06 0.221 0.825
## A78:A8:A32:A60:A29 1.013e+05 1.581e+05 0.641 0.523
## A7:A78:A8:A32:A60:A29 -3.041e+05 1.300e+06 -0.234 0.816
##
## Residual standard error: 0.0737 on 80 degrees of freedom
## Multiple R-squared: 0.8714, Adjusted R-squared: 0.7701
## F-statistic: 8.601 on 63 and 80 DF, p-value: < 2.2e-16
##
## [1] "--------------------------------------------------------------------------------------"
## [1] "CORRIDA 5"
## Confusion Matrix and Statistics
##
## Reference
## Prediction Bajo Medio Alto Excelente
## Bajo 0 2 1 0
## Medio 1 4 3 0
## Alto 1 8 18 5
## Excelente 0 0 0 0
##
## Overall Statistics
##
## Accuracy : 0.5116
## 95% CI : (0.3546, 0.6669)
## No Information Rate : 0.5116
## P-Value [Acc > NIR] : 0.561
##
## Kappa : 0.1207
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: Bajo Class: Medio Class: Alto Class: Excelente
## Sensitivity 0.00000 0.28571 0.8182 0.0000
## Specificity 0.92683 0.86207 0.3333 1.0000
## Pos Pred Value 0.00000 0.50000 0.5625 NaN
## Neg Pred Value 0.95000 0.71429 0.6364 0.8837
## Prevalence 0.04651 0.32558 0.5116 0.1163
## Detection Rate 0.00000 0.09302 0.4186 0.0000
## Detection Prevalence 0.06977 0.18605 0.7442 0.0000
## Balanced Accuracy 0.46341 0.57389 0.5758 0.5000
## [1] "VARIABLES:A7,A58"
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.316203 -0.075412 -0.002746 0.072063 0.297423
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.78090 0.09777 79.581 < 2e-16 ***
## A7 4.91816 0.76921 6.394 2.25e-09 ***
## A58 -0.20070 0.17669 -1.136 0.258
## A7:A58 1.07825 1.26528 0.852 0.396
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.115 on 140 degrees of freedom
## Multiple R-squared: 0.4517, Adjusted R-squared: 0.44
## F-statistic: 38.45 on 3 and 140 DF, p-value: < 2.2e-16
##
## [1] "--------------------------------------------------------------------------------------"
## [1] "CORRIDA 6"
## Confusion Matrix and Statistics
##
## Reference
## Prediction Bajo Medio Alto Excelente
## Bajo 2 1 0 0
## Medio 1 10 3 0
## Alto 0 1 19 4
## Excelente 0 0 2 0
##
## Overall Statistics
##
## Accuracy : 0.7209
## 95% CI : (0.5633, 0.8467)
## No Information Rate : 0.5581
## P-Value [Acc > NIR] : 0.02131
##
## Kappa : 0.5257
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: Bajo Class: Medio Class: Alto Class: Excelente
## Sensitivity 0.66667 0.8333 0.7917 0.00000
## Specificity 0.97500 0.8710 0.7368 0.94872
## Pos Pred Value 0.66667 0.7143 0.7917 0.00000
## Neg Pred Value 0.97500 0.9310 0.7368 0.90244
## Prevalence 0.06977 0.2791 0.5581 0.09302
## Detection Rate 0.04651 0.2326 0.4419 0.00000
## Detection Prevalence 0.06977 0.3256 0.5581 0.04651
## Balanced Accuracy 0.82083 0.8522 0.7643 0.47436
## [1] "VARIABLES:A7,A38,A60,A69,A77"
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.228769 -0.038779 0.005626 0.043149 0.158399
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 127.27 676.68 0.188 0.851
## A7 -1313.77 5270.61 -0.249 0.804
## A38 -19.69 94.72 -0.208 0.836
## A60 -109.81 1112.18 -0.099 0.922
## A69 -432.05 2891.62 -0.149 0.881
## A77 -214.88 1058.48 -0.203 0.839
## A7:A38 206.20 737.35 0.280 0.780
## A7:A60 1761.35 8808.54 0.200 0.842
## A38:A60 18.69 156.69 0.119 0.905
## A7:A69 5968.36 22709.43 0.263 0.793
## A38:A69 79.76 400.14 0.199 0.842
## A60:A69 241.00 4721.54 0.051 0.959
## A7:A77 2400.90 8172.78 0.294 0.769
## A38:A77 34.01 149.17 0.228 0.820
## A60:A77 149.49 1787.91 0.084 0.934
## A69:A77 792.75 4513.87 0.176 0.861
## A7:A38:A60 -271.73 1240.65 -0.219 0.827
## A7:A38:A69 -979.12 3140.07 -0.312 0.756
## A7:A60:A69 -7710.50 37794.81 -0.204 0.839
## A38:A60:A69 -59.74 659.06 -0.091 0.928
## A7:A38:A77 -363.76 1151.82 -0.316 0.753
## A7:A60:A77 -2879.73 13990.52 -0.206 0.837
## A38:A60:A77 -24.23 253.99 -0.095 0.924
## A7:A69:A77 -10654.43 35258.83 -0.302 0.763
## A38:A69:A77 -140.12 628.92 -0.223 0.824
## A60:A69:A77 -306.18 7579.99 -0.040 0.968
## A7:A38:A60:A69 1283.34 5271.83 0.243 0.808
## A7:A38:A60:A77 427.30 1988.32 0.215 0.830
## A7:A38:A69:A77 1708.07 4909.54 0.348 0.729
## A7:A60:A69:A77 12555.45 60180.53 0.209 0.835
## A38:A60:A69:A77 80.38 1066.51 0.075 0.940
## A7:A38:A60:A69:A77 -2054.79 8463.65 -0.243 0.809
##
## Residual standard error: 0.07616 on 112 degrees of freedom
## Multiple R-squared: 0.8077, Adjusted R-squared: 0.7544
## F-statistic: 15.17 on 31 and 112 DF, p-value: < 2.2e-16
##
## [1] "--------------------------------------------------------------------------------------"
## [1] "CORRIDA 7"
## Confusion Matrix and Statistics
##
## Reference
## Prediction Bajo Medio Alto Excelente
## Bajo 4 1 0 0
## Medio 1 9 3 0
## Alto 1 3 17 1
## Excelente 0 0 1 2
##
## Overall Statistics
##
## Accuracy : 0.7442
## 95% CI : (0.5883, 0.8648)
## No Information Rate : 0.4884
## P-Value [Acc > NIR] : 0.0005691
##
## Kappa : 0.5988
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: Bajo Class: Medio Class: Alto Class: Excelente
## Sensitivity 0.66667 0.6923 0.8095 0.66667
## Specificity 0.97297 0.8667 0.7727 0.97500
## Pos Pred Value 0.80000 0.6923 0.7727 0.66667
## Neg Pred Value 0.94737 0.8667 0.8095 0.97500
## Prevalence 0.13953 0.3023 0.4884 0.06977
## Detection Rate 0.09302 0.2093 0.3953 0.04651
## Detection Prevalence 0.11628 0.3023 0.5116 0.06977
## Balanced Accuracy 0.81982 0.7795 0.7911 0.82083
## [1] "VARIABLES:A7,A38,A60,A63"
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.29292 -0.03804 0.00788 0.04612 0.22087
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 49.461 19.073 2.593 0.0106 *
## A7 -346.549 151.135 -2.293 0.0235 *
## A38 -5.552 2.701 -2.056 0.0418 *
## A60 -102.765 44.787 -2.295 0.0234 *
## A63 -138.563 58.288 -2.377 0.0189 *
## A7:A38 46.753 21.285 2.196 0.0299 *
## A7:A60 835.983 346.589 2.412 0.0173 *
## A38:A60 14.217 6.398 2.222 0.0280 *
## A7:A63 1195.575 463.614 2.579 0.0110 *
## A38:A63 17.977 8.171 2.200 0.0296 *
## A60:A63 311.977 134.489 2.320 0.0219 *
## A7:A38:A60 -116.223 49.556 -2.345 0.0206 *
## A7:A38:A63 -155.008 64.723 -2.395 0.0181 *
## A7:A60:A63 -2615.981 1050.512 -2.490 0.0140 *
## A38:A60:A63 -42.137 19.100 -2.206 0.0292 *
## A7:A38:A60:A63 354.526 149.282 2.375 0.0190 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07929 on 128 degrees of freedom
## Multiple R-squared: 0.7618, Adjusted R-squared: 0.7338
## F-statistic: 27.28 on 15 and 128 DF, p-value: < 2.2e-16
##
## [1] "--------------------------------------------------------------------------------------"
## [1] "CORRIDA 8"
## Confusion Matrix and Statistics
##
## Reference
## Prediction Bajo Medio Alto Excelente
## Bajo 3 0 0 0
## Medio 1 10 2 0
## Alto 1 4 17 1
## Excelente 0 0 3 1
##
## Overall Statistics
##
## Accuracy : 0.7209
## 95% CI : (0.5633, 0.8467)
## No Information Rate : 0.5116
## P-Value [Acc > NIR] : 0.004255
##
## Kappa : 0.5466
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: Bajo Class: Medio Class: Alto Class: Excelente
## Sensitivity 0.60000 0.7143 0.7727 0.50000
## Specificity 1.00000 0.8966 0.7143 0.92683
## Pos Pred Value 1.00000 0.7692 0.7391 0.25000
## Neg Pred Value 0.95000 0.8667 0.7500 0.97436
## Prevalence 0.11628 0.3256 0.5116 0.04651
## Detection Rate 0.06977 0.2326 0.3953 0.02326
## Detection Prevalence 0.06977 0.3023 0.5349 0.09302
## Balanced Accuracy 0.80000 0.8054 0.7435 0.71341
## [1] "VARIABLES:A7,A78,A32,A24"
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.301248 -0.055140 -0.002056 0.055171 0.232031
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 213.501 177.754 1.201 0.232
## A7 -1942.277 1584.812 -1.226 0.223
## A78 -31.004 24.980 -1.241 0.217
## A32 -68.987 70.082 -0.984 0.327
## A24 -73.892 57.972 -1.275 0.205
## A7:A78 296.296 225.301 1.315 0.191
## A7:A32 703.826 653.222 1.077 0.283
## A78:A32 10.726 9.976 1.075 0.284
## A7:A24 685.396 528.973 1.296 0.197
## A78:A24 11.144 8.186 1.361 0.176
## A32:A24 26.074 22.974 1.135 0.259
## A7:A78:A32 -109.684 93.851 -1.169 0.245
## A7:A78:A24 -104.304 75.343 -1.384 0.169
## A7:A32:A24 -255.907 219.310 -1.167 0.245
## A78:A32:A24 -4.030 3.284 -1.227 0.222
## A7:A78:A32:A24 39.702 31.536 1.259 0.210
##
## Residual standard error: 0.09533 on 128 degrees of freedom
## Multiple R-squared: 0.6557, Adjusted R-squared: 0.6153
## F-statistic: 16.25 on 15 and 128 DF, p-value: < 2.2e-16
##
## [1] "--------------------------------------------------------------------------------------"
## [1] "CORRIDA 9"
## Confusion Matrix and Statistics
##
## Reference
## Prediction Bajo Medio Alto Excelente
## Bajo 5 0 0 0
## Medio 1 6 0 0
## Alto 0 6 18 3
## Excelente 0 0 1 3
##
## Overall Statistics
##
## Accuracy : 0.7442
## 95% CI : (0.5883, 0.8648)
## No Information Rate : 0.4419
## P-Value [Acc > NIR] : 5.628e-05
##
## Kappa : 0.6052
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: Bajo Class: Medio Class: Alto Class: Excelente
## Sensitivity 0.8333 0.5000 0.9474 0.50000
## Specificity 1.0000 0.9677 0.6250 0.97297
## Pos Pred Value 1.0000 0.8571 0.6667 0.75000
## Neg Pred Value 0.9737 0.8333 0.9375 0.92308
## Prevalence 0.1395 0.2791 0.4419 0.13953
## Detection Rate 0.1163 0.1395 0.4186 0.06977
## Detection Prevalence 0.1163 0.1628 0.6279 0.09302
## Balanced Accuracy 0.9167 0.7339 0.7862 0.73649
## [1] "VARIABLES:A7,A78,A8,A38,A60"
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.248568 -0.035466 0.003573 0.040377 0.176826
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -246.554 506.351 -0.487 0.627
## A7 1693.360 3837.519 0.441 0.660
## A78 30.667 71.403 0.429 0.668
## A8 8801.925 9541.259 0.923 0.358
## A38 32.180 74.053 0.435 0.665
## A60 402.467 980.807 0.410 0.682
## A7:A78 -200.911 549.331 -0.366 0.715
## A7:A8 -69943.997 73319.533 -0.954 0.342
## A78:A8 -1115.148 1336.494 -0.834 0.406
## A7:A38 -194.493 559.303 -0.348 0.729
## A78:A38 -3.802 10.415 -0.365 0.716
## A8:A38 -1216.647 1362.524 -0.893 0.374
## A7:A60 -2587.904 7454.287 -0.347 0.729
## A78:A60 -46.610 138.082 -0.338 0.736
## A8:A60 -14414.532 17260.617 -0.835 0.405
## A38:A60 -49.710 140.395 -0.354 0.724
## A7:A78:A8 8959.368 10370.506 0.864 0.389
## A7:A78:A38 22.130 79.720 0.278 0.782
## A7:A8:A38 9361.962 10420.694 0.898 0.371
## A78:A8:A38 153.561 190.514 0.806 0.422
## A7:A78:A60 291.667 1066.343 0.274 0.785
## A7:A8:A60 112756.847 132523.064 0.851 0.397
## A78:A8:A60 1794.820 2413.752 0.744 0.459
## A7:A38:A60 286.904 1062.844 0.270 0.788
## A78:A38:A60 5.604 19.730 0.284 0.777
## A8:A38:A60 1979.567 2433.632 0.813 0.418
## A7:A78:A8:A38 -1190.689 1470.111 -0.810 0.420
## A7:A78:A8:A60 -14218.088 18744.998 -0.759 0.450
## A7:A78:A38:A60 -30.289 151.615 -0.200 0.842
## A7:A8:A38:A60 -15007.269 18597.631 -0.807 0.421
## A78:A8:A38:A60 -245.396 339.913 -0.722 0.472
## A7:A78:A8:A38:A60 1877.460 2625.824 0.715 0.476
##
## Residual standard error: 0.07622 on 112 degrees of freedom
## Multiple R-squared: 0.8074, Adjusted R-squared: 0.7541
## F-statistic: 15.14 on 31 and 112 DF, p-value: < 2.2e-16
##
## [1] "--------------------------------------------------------------------------------------"
## [1] "CORRIDA 10"
## Confusion Matrix and Statistics
##
## Reference
## Prediction Bajo Medio Alto Excelente
## Bajo 3 0 0 0
## Medio 1 5 5 0
## Alto 1 3 23 2
## Excelente 0 0 0 0
##
## Overall Statistics
##
## Accuracy : 0.7209
## 95% CI : (0.5633, 0.8467)
## No Information Rate : 0.6512
## P-Value [Acc > NIR] : 0.2138
##
## Kappa : 0.4475
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: Bajo Class: Medio Class: Alto Class: Excelente
## Sensitivity 0.60000 0.6250 0.8214 0.00000
## Specificity 1.00000 0.8286 0.6000 1.00000
## Pos Pred Value 1.00000 0.4545 0.7931 NaN
## Neg Pred Value 0.95000 0.9062 0.6429 0.95349
## Prevalence 0.11628 0.1860 0.6512 0.04651
## Detection Rate 0.06977 0.1163 0.5349 0.00000
## Detection Prevalence 0.06977 0.2558 0.6744 0.00000
## Balanced Accuracy 0.80000 0.7268 0.7107 0.50000
## [1] "VARIABLES:A7,A38,A46,A32"
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.231151 -0.040608 0.004273 0.048691 0.166996
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.975 97.860 0.613 0.541
## A7 -523.771 714.873 -0.733 0.465
## A38 -7.220 14.246 -0.507 0.613
## A46 -34.130 43.807 -0.779 0.437
## A32 -38.430 41.749 -0.921 0.359
## A7:A38 70.486 104.125 0.677 0.500
## A7:A46 349.810 321.398 1.088 0.278
## A38:A46 4.476 6.347 0.705 0.482
## A7:A32 351.638 305.283 1.152 0.252
## A38:A32 5.261 6.087 0.864 0.389
## A46:A32 21.899 18.752 1.168 0.245
## A7:A38:A46 -45.019 46.527 -0.968 0.335
## A7:A38:A32 -47.284 44.539 -1.062 0.290
## A7:A46:A32 -208.486 137.983 -1.511 0.133
## A38:A46:A32 -2.892 2.719 -1.064 0.290
## A7:A38:A46:A32 27.208 19.984 1.362 0.176
##
## Residual standard error: 0.07658 on 128 degrees of freedom
## Multiple R-squared: 0.7777, Adjusted R-squared: 0.7517
## F-statistic: 29.86 on 15 and 128 DF, p-value: < 2.2e-16
##
## [1] "--------------------------------------------------------------------------------------"
## Se toman en cuenta solo las interacciones doble y triples
metodo<-lm(Aroma~(A7 + A78 + A8 + A28 + A2 + A76 + A5 + A30) +
(A7:A78 + A7:A8 + A7:A28 + A7:A2 + A7:A76 + A7:A5 + A7:A30 +
A78:A8 + A78:A28 + A78:A2 + A78:A76 + A78:A5 + A78:A30 +
A8:A28 + A8:A2 + A8:A76 + A8:A5 + A8:A30 +
A28:A2 + A28:A76 + A28:A5 + A28:A30 +
A2:A76 + A2:A5 + A2:A30 +
A76:A5 + A76:A30 +
A5:A30) +
(A7:A78:A8 + A7:A78:A28 + A7:A78:A2 + A7:A78:A76 + A7:A78:A5 + A7:A78:A30 +
A7:A8:A28 + A7:A8:A2 + A7:A8:A76 + A7:A8:A5 + A7:A8:A30 +
A7:A28:A2 + A7:A28:A76 + A7:A28:A5 + A7:A28:A30 +
A7:A2:A76 + A7:A2:A5 + A7:A2:A30 +
A7:A76:A5 + A7:A76:A30 +
A7:A5:A30 +
A78:A8:A28 + A78:A8:A2 + A78:A8:A76 + A78:A8:A5 + A78:A8:A30 +
A78:A28:A2 + A78:A28:A76 + A78:A28:A5 + A78:A28:A30 +
A78:A2:A76 + A78:A2:A5 + A78:A2:A30 +
A78:A76:A5 + A78:A76:A30 +
A78:A5:A30 +
A8:A28:A2 + A8:A28:A76 + A8:A28:A5 + A8:A28:A30 +
A8:A2:A76 + A8:A2:A5 + A8:A2:A30 +
A8:A76:A5 + A8:A76:A30 +
A8:A5:A30 +
A28:A2:A76 + A28:A2:A5 + A28:A2:A30 +
A28:A76:A5 + A28:A76:A30 +
A28:A5:A30 +
A2:A76:A5 + A2:A76:A30 +
A2:A5:A30 +
A76:A5:A30), data=mm1)
#summary(metodo)
plot(metodo$fitted.values,mm1$Aroma,xlim=c(7.8,9.0),ylim=c(7.8,9.0))
abline(0,1,col="blue")
print(summary(metodo))
##
## Call:
## lm(formula = Aroma ~ (A7 + A78 + A8 + A28 + A2 + A76 + A5 + A30) +
## (A7:A78 + A7:A8 + A7:A28 + A7:A2 + A7:A76 + A7:A5 + A7:A30 +
## A78:A8 + A78:A28 + A78:A2 + A78:A76 + A78:A5 + A78:A30 +
## A8:A28 + A8:A2 + A8:A76 + A8:A5 + A8:A30 + A28:A2 + A28:A76 +
## A28:A5 + A28:A30 + A2:A76 + A2:A5 + A2:A30 + A76:A5 +
## A76:A30 + A5:A30) + (A7:A78:A8 + A7:A78:A28 + A7:A78:A2 +
## A7:A78:A76 + A7:A78:A5 + A7:A78:A30 + A7:A8:A28 + A7:A8:A2 +
## A7:A8:A76 + A7:A8:A5 + A7:A8:A30 + A7:A28:A2 + A7:A28:A76 +
## A7:A28:A5 + A7:A28:A30 + A7:A2:A76 + A7:A2:A5 + A7:A2:A30 +
## A7:A76:A5 + A7:A76:A30 + A7:A5:A30 + A78:A8:A28 + A78:A8:A2 +
## A78:A8:A76 + A78:A8:A5 + A78:A8:A30 + A78:A28:A2 + A78:A28:A76 +
## A78:A28:A5 + A78:A28:A30 + A78:A2:A76 + A78:A2:A5 + A78:A2:A30 +
## A78:A76:A5 + A78:A76:A30 + A78:A5:A30 + A8:A28:A2 + A8:A28:A76 +
## A8:A28:A5 + A8:A28:A30 + A8:A2:A76 + A8:A2:A5 + A8:A2:A30 +
## A8:A76:A5 + A8:A76:A30 + A8:A5:A30 + A28:A2:A76 + A28:A2:A5 +
## A28:A2:A30 + A28:A76:A5 + A28:A76:A30 + A28:A5:A30 + A2:A76:A5 +
## A2:A76:A30 + A2:A5:A30 + A76:A5:A30), data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.141682 -0.026633 0.004847 0.027674 0.130727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.387e+02 3.856e+02 -1.138 0.2606
## A7 -4.437e+01 2.173e+03 -0.020 0.9838
## A78 7.030e+01 5.520e+01 1.273 0.2086
## A8 -7.030e+01 4.283e+03 -0.016 0.9870
## A28 -4.282e+02 1.580e+03 -0.271 0.7874
## A2 3.077e+03 2.704e+03 1.138 0.2605
## A76 -1.051e+02 8.051e+01 -1.305 0.1977
## A5 2.331e+03 1.448e+03 1.610 0.1136
## A30 1.455e+02 1.331e+02 1.093 0.2795
## A7:A78 -7.658e+01 2.967e+02 -0.258 0.7974
## A7:A8 4.345e+02 1.930e+04 0.023 0.9821
## A7:A28 7.942e+03 7.098e+03 1.119 0.2684
## A7:A2 -1.443e+03 1.454e+04 -0.099 0.9213
## A7:A76 3.830e+02 4.431e+02 0.865 0.3914
## A7:A5 -9.185e+03 7.285e+03 -1.261 0.2131
## A7:A30 9.194e+02 6.110e+02 1.505 0.1386
## A78:A8 2.609e+02 4.591e+02 0.568 0.5724
## A78:A28 -2.664e+01 2.700e+02 -0.099 0.9218
## A78:A2 -5.836e+02 3.069e+02 -1.902 0.0629 .
## A78:A76 5.590e+00 9.430e+00 0.593 0.5559
## A78:A5 -2.952e+02 1.603e+02 -1.842 0.0713 .
## A78:A30 -2.484e+01 1.942e+01 -1.279 0.2068
## A8:A28 5.653e+02 7.739e+03 0.073 0.9421
## A8:A2 -1.540e+04 1.310e+04 -1.176 0.2452
## A8:A76 1.967e+02 6.617e+02 0.297 0.7675
## A8:A5 -2.514e+03 3.641e+03 -0.690 0.4930
## A8:A30 -1.538e+02 1.335e+03 -0.115 0.9088
## A28:A2 -2.255e+03 4.558e+03 -0.495 0.6229
## A28:A76 -2.068e+01 1.333e+02 -0.155 0.8773
## A28:A5 -8.582e+02 2.780e+03 -0.309 0.7588
## A28:A30 1.848e+02 5.912e+02 0.313 0.7559
## A2:A76 3.491e+02 4.209e+02 0.830 0.4107
## A2:A5 4.589e+03 5.697e+03 0.805 0.4243
## A2:A30 -1.107e+03 1.043e+03 -1.062 0.2934
## A76:A5 1.504e+02 2.513e+02 0.598 0.5522
## A76:A30 3.550e+01 2.949e+01 1.204 0.2343
## A5:A30 -9.124e+02 6.049e+02 -1.508 0.1376
## A7:A78:A8 -1.011e+03 1.782e+03 -0.567 0.5731
## A7:A78:A28 -2.816e+02 9.045e+02 -0.311 0.7568
## A7:A78:A2 1.044e+03 1.365e+03 0.764 0.4481
## A7:A78:A76 -3.368e+01 3.585e+01 -0.940 0.3518
## A7:A78:A5 1.106e+03 7.193e+02 1.538 0.1303
## A7:A78:A30 -7.054e+01 7.443e+01 -0.948 0.3477
## A7:A8:A28 4.666e+03 1.843e+04 0.253 0.8011
## A7:A8:A2 -5.311e+03 5.336e+04 -0.100 0.9211
## A7:A8:A76 9.299e+02 1.629e+03 0.571 0.5707
## A7:A8:A5 1.942e+04 1.256e+04 1.546 0.1282
## A7:A8:A30 6.528e+02 5.173e+03 0.126 0.9001
## A7:A28:A2 4.936e+03 1.729e+04 0.285 0.7765
## A7:A28:A76 -1.629e+02 6.698e+02 -0.243 0.8088
## A7:A28:A5 3.047e+03 7.745e+03 0.393 0.6956
## A7:A28:A30 -3.969e+03 1.574e+03 -2.522 0.0148 *
## A7:A2:A76 -8.662e+02 1.036e+03 -0.836 0.4069
## A7:A2:A5 -3.336e+02 2.354e+04 -0.014 0.9887
## A7:A2:A30 -2.577e+03 3.948e+03 -0.653 0.5168
## A7:A76:A5 -8.989e+02 6.450e+02 -1.394 0.1695
## A7:A76:A30 3.298e+01 1.252e+02 0.263 0.7933
## A7:A5:A30 4.465e+02 2.354e+03 0.190 0.8503
## A78:A8:A28 -2.794e+02 1.024e+03 -0.273 0.7861
## A78:A8:A2 1.429e+03 1.109e+03 1.288 0.2034
## A78:A8:A76 -4.254e+01 6.157e+01 -0.691 0.4928
## A78:A8:A5 -2.597e+02 3.271e+02 -0.794 0.4309
## A78:A8:A30 -7.318e+01 1.096e+02 -0.668 0.5074
## A78:A28:A2 3.018e+02 3.880e+02 0.778 0.4403
## A78:A28:A76 -2.588e-03 1.479e+01 0.000 0.9999
## A78:A28:A5 9.015e+01 2.138e+02 0.422 0.6750
## A78:A28:A30 2.720e+01 1.076e+02 0.253 0.8014
## A78:A2:A76 2.385e+01 3.471e+01 0.687 0.4950
## A78:A2:A5 -3.764e+02 5.410e+02 -0.696 0.4897
## A78:A2:A30 2.113e+02 1.113e+02 1.899 0.0633 .
## A78:A76:A5 1.385e+01 2.186e+01 0.634 0.5292
## A78:A76:A30 -2.051e+00 2.900e+00 -0.707 0.4827
## A78:A5:A30 1.042e+02 5.341e+01 1.951 0.0566 .
## A8:A28:A2 -2.115e+04 2.149e+04 -0.984 0.3296
## A8:A28:A76 6.732e+02 7.021e+02 0.959 0.3421
## A8:A28:A5 -1.047e+04 5.731e+03 -1.828 0.0734 .
## A8:A28:A30 1.735e+03 2.014e+03 0.862 0.3929
## A8:A2:A76 1.789e+03 1.407e+03 1.272 0.2093
## A8:A2:A5 -2.537e+03 9.901e+03 -0.256 0.7988
## A8:A2:A30 3.207e+03 3.824e+03 0.839 0.4056
## A8:A76:A5 2.094e+02 3.696e+02 0.567 0.5734
## A8:A76:A30 -8.464e+01 1.309e+02 -0.647 0.5207
## A8:A5:A30 1.548e+03 8.790e+02 1.761 0.0842 .
## A28:A2:A76 1.118e+03 5.167e+02 2.164 0.0352 *
## A28:A2:A5 1.501e+03 7.164e+03 0.210 0.8348
## A28:A2:A30 -6.335e+02 1.299e+03 -0.488 0.6279
## A28:A76:A5 -1.505e+02 2.387e+02 -0.630 0.5312
## A28:A76:A30 -1.599e+01 4.500e+01 -0.355 0.7237
## A28:A5:A30 3.545e+02 9.666e+02 0.367 0.7153
## A2:A76:A5 -1.447e+03 7.699e+02 -1.879 0.0659 .
## A2:A76:A30 -1.682e+02 1.010e+02 -1.665 0.1020
## A2:A5:A30 8.886e+00 1.783e+03 0.005 0.9960
## A76:A5:A30 -4.018e+01 5.260e+01 -0.764 0.4485
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07551 on 51 degrees of freedom
## Multiple R-squared: 0.9139, Adjusted R-squared: 0.7586
## F-statistic: 5.885 on 92 and 51 DF, p-value: 1.536e-10
## Se toman en cuenta todas las interacciones posibles entre las 8 variables
new_string="A7*A78*A8*A28*A2*A76*A5"
f<-paste0("Aroma~",new_string) %>% as.formula #Calcula fórmula de regresión
metodo<-lm(f , data=mm1)
#summary(metodo)
plot(metodo$fitted.values,mm1$Aroma,xlim=c(7.8,9.0),ylim=c(7.8,9.0))
abline(0,1,col="blue")
print(summary(metodo))
##
## Call:
## lm(formula = f, data = mm1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.061747 -0.007725 -0.000113 0.008325 0.064410
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29222 19335 -1.511 0.1491
## A7 201143 141108 1.425 0.1721
## A78 4258 2837 1.501 0.1518
## A8 -92080 469870 -0.196 0.8470
## A28 200025 128296 1.559 0.1374
## A2 178440 379159 0.471 0.6439
## A76 27567 26507 1.040 0.3129
## A5 247067 138107 1.789 0.0915 .
## A7:A78 -29194 20765 -1.406 0.1778
## A7:A8 671645 3399361 0.198 0.8457
## A78:A8 17214 62447 0.276 0.7861
## A7:A28 -1383930 928497 -1.491 0.1544
## A78:A28 -29770 19247 -1.547 0.1404
## A8:A28 1117298 3868399 0.289 0.7762
## A7:A2 -944927 2796746 -0.338 0.7396
## A78:A2 -26563 54515 -0.487 0.6323
## A8:A2 5491938 8163663 0.673 0.5102
## A28:A2 -767211 2804092 -0.274 0.7877
## A7:A76 -177733 223969 -0.794 0.4384
## A78:A76 -3687 3597 -1.025 0.3198
## A8:A76 -100583 409147 -0.246 0.8088
## A28:A76 -225678 207716 -1.086 0.2924
## A2:A76 -146549 267026 -0.549 0.5903
## A7:A5 -1751620 1022483 -1.713 0.1049
## A78:A5 -36824 20305 -1.814 0.0874 .
## A8:A5 -784272 1782940 -0.440 0.6656
## A28:A5 -1788659 949742 -1.883 0.0769 .
## A2:A5 -2272460 2489796 -0.913 0.3742
## A76:A5 -206128 119590 -1.724 0.1029
## A7:A78:A8 -127645 451402 -0.283 0.7808
## A7:A78:A28 205517 139347 1.475 0.1585
## A7:A8:A28 -6854558 28441475 -0.241 0.8124
## A78:A8:A28 -185259 519489 -0.357 0.7258
## A7:A78:A2 141050 403228 0.350 0.7308
## A7:A8:A2 -42865994 58640926 -0.731 0.4747
## A78:A8:A2 -837247 1094797 -0.765 0.4549
## A7:A28:A2 2529548 20743833 0.122 0.9044
## A78:A28:A2 123806 404204 0.306 0.7631
## A8:A28:A2 -51820520 67475955 -0.768 0.4530
## A7:A78:A76 23768 30292 0.785 0.4435
## A7:A8:A76 518834 3351079 0.155 0.8788
## A78:A8:A76 7976 53607 0.149 0.8835
## A7:A28:A76 1592270 1810603 0.879 0.3914
## A78:A28:A76 30921 27893 1.109 0.2831
## A8:A28:A76 399590 3172425 0.126 0.9012
## A7:A2:A76 751914 2273110 0.331 0.7448
## A78:A2:A76 20287 37624 0.539 0.5967
## A8:A2:A76 -3162398 4004967 -0.790 0.4406
## A28:A2:A76 1304846 1889976 0.690 0.4993
## A7:A78:A5 260990 150302 1.736 0.1006
## A7:A8:A5 5426776 12755724 0.425 0.6759
## A78:A8:A5 116202 246878 0.471 0.6438
## A7:A28:A5 12615868 6903646 1.827 0.0852 .
## A78:A28:A5 270532 141952 1.906 0.0737 .
## A8:A28:A5 4886777 13449069 0.363 0.7208
## A7:A2:A5 14879473 18249591 0.815 0.4262
## A78:A2:A5 347338 361175 0.962 0.3497
## A8:A2:A5 -9630226 37197949 -0.259 0.7988
## A28:A2:A5 14731712 18525526 0.795 0.4375
## A7:A76:A5 1438582 955333 1.506 0.1505
## A78:A76:A5 28962 16558 1.749 0.0983 .
## A8:A76:A5 1354858 1316702 1.029 0.3179
## A28:A76:A5 1713688 864771 1.982 0.0639 .
## A2:A76:A5 1780815 1344545 1.324 0.2029
## A7:A78:A8:A28 1179102 3822973 0.308 0.7615
## A7:A78:A8:A2 6532362 7869771 0.830 0.4180
## A7:A78:A28:A2 -446310 2987081 -0.149 0.8830
## A7:A8:A28:A2 388453601 489444521 0.794 0.4383
## A78:A8:A28:A2 7762105 9093111 0.854 0.4052
## A7:A78:A8:A76 -31047 440103 -0.071 0.9446
## A7:A78:A28:A76 -220676 242599 -0.910 0.3757
## A7:A8:A28:A76 -2831267 26841808 -0.105 0.9172
## A78:A8:A28:A76 -12999 412104 -0.032 0.9752
## A7:A78:A2:A76 -108095 316936 -0.341 0.7372
## A7:A8:A2:A76 26358203 32400900 0.814 0.4272
## A78:A8:A2:A76 489369 521075 0.939 0.3608
## A7:A28:A2:A76 -9831705 16695370 -0.589 0.5637
## A78:A28:A2:A76 -192156 265356 -0.724 0.4788
## A8:A28:A2:A76 34090638 25568935 1.333 0.2000
## A7:A78:A8:A5 -799955 1769483 -0.452 0.6569
## A7:A78:A28:A5 -1907303 1029924 -1.852 0.0815 .
## A7:A8:A28:A5 -37430264 96900888 -0.386 0.7041
## A78:A8:A28:A5 -765383 1870096 -0.409 0.6874
## A7:A78:A2:A5 -2287221 2649696 -0.863 0.4000
## A7:A8:A2:A5 89112589 267598284 0.333 0.7432
## A78:A8:A2:A5 1241819 5158356 0.241 0.8126
## A7:A28:A2:A5 -90926389 135136331 -0.673 0.5101
## A78:A28:A2:A5 -2314696 2695104 -0.859 0.4024
## A8:A28:A2:A5 105688960 295244399 0.358 0.7248
## A7:A78:A76:A5 -202603 131632 -1.539 0.1422
## A7:A8:A76:A5 -9343703 10765316 -0.868 0.3975
## A78:A8:A76:A5 -177220 176018 -1.007 0.3281
## A7:A28:A76:A5 -12634401 7057774 -1.790 0.0913 .
## A78:A28:A76:A5 -244448 119485 -2.046 0.0566 .
## A8:A28:A76:A5 -10564296 8997438 -1.174 0.2565
## A7:A2:A76:A5 -12055012 10395950 -1.160 0.2622
## A78:A2:A76:A5 -260230 193625 -1.344 0.1966
## A8:A2:A76:A5 1182659 10815517 0.109 0.9142
## A28:A2:A76:A5 -15690819 9242383 -1.698 0.1078
## A7:A78:A8:A28:A2 -58360583 65971953 -0.885 0.3887
## A7:A78:A8:A28:A76 121821 3503159 0.035 0.9727
## A7:A78:A8:A2:A76 -3943078 4223719 -0.934 0.3636
## A7:A78:A28:A2:A76 1497806 2307799 0.649 0.5250
## A7:A8:A28:A2:A76 -241572898 212506229 -1.137 0.2714
## A78:A8:A28:A2:A76 -5040862 3204868 -1.573 0.1342
## A7:A78:A8:A28:A5 5776612 13467787 0.429 0.6734
## A7:A78:A8:A2:A5 -11803416 37188962 -0.317 0.7548
## A7:A78:A28:A2:A5 14427108 19608765 0.736 0.4719
## A7:A8:A28:A2:A5 -895010488 2136069067 -0.419 0.6805
## A78:A8:A28:A2:A5 -13736578 40858042 -0.336 0.7408
## A7:A78:A8:A76:A5 1226256 1437984 0.853 0.4056
## A7:A78:A28:A76:A5 1810494 967062 1.872 0.0785 .
## A7:A8:A28:A76:A5 81481797 77640689 1.049 0.3087
## A78:A8:A28:A76:A5 1417200 1170127 1.211 0.2424
## A7:A78:A2:A76:A5 1782669 1491283 1.195 0.2483
## A7:A8:A2:A76:A5 -18307351 84710973 -0.216 0.8315
## A78:A8:A2:A76:A5 -156014 1525825 -0.102 0.9198
## A7:A28:A2:A76:A5 120169733 69687374 1.724 0.1028
## A78:A28:A2:A76:A5 2343377 1352120 1.733 0.1012
## A8:A28:A2:A76:A5 -19968116 31163013 -0.641 0.5302
## A7:A78:A8:A28:A2:A76 34941224 26648075 1.311 0.2072
## A7:A78:A8:A28:A2:A5 119182401 295297127 0.404 0.6915
## A7:A78:A8:A28:A76:A5 -11079174 10097918 -1.097 0.2879
## A7:A78:A8:A2:A76:A5 2196919 11950091 0.184 0.8563
## A7:A78:A28:A2:A76:A5 -18062444 10134080 -1.782 0.0926 .
## A7:A8:A28:A2:A76:A5 57386329 148402673 0.387 0.7038
## A78:A8:A28:A2:A76:A5 2070056 4031236 0.514 0.6142
## A7:A78:A8:A28:A2:A76:A5 NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05538 on 17 degrees of freedom
## Multiple R-squared: 0.9846, Adjusted R-squared: 0.8702
## F-statistic: 8.606 on 126 and 17 DF, p-value: 4.556e-06
mm0<-import("PolarCorrelation.xlsx")
nombres=names(mm0[,1:86])
codigo=c(gsub(" ","",paste("A",1:86)))
names(mm0)<-c(gsub(" ","",paste("A",1:86)),"Aroma","Flavor","Aftertaste","Acidity","Body","Balance","Overall")
compuestos<-data.frame(codigo=codigo,nombre=nombres)
compuestos
## codigo nombre
## 1 A1 1,2-Propanediamine
## 2 A2 Acetaldehyde
## 3 A3 1-Propen-2-ol, acetate
## 4 A4 Ethyl Acetate
## 5 A5 Butanal, 2-methyl-
## 6 A6 Ethanol
## 7 A7 2,3-Butanedione
## 8 A8 Butanoic acid, 2-methyl-, ethyl ester
## 9 A9 2,3-Pentanedione
## 10 A10 Butanoic acid, 3-methyl-, ethyl ester
## 11 A11 1,5-Heptadiene, 2,3,6-trimethyl- $$ 2,3,6-Trimethyl-1,5-heptadiene
## 12 A12 1-Butanol, 3-methyl-, acetate
## 13 A13 p-Cresol
## 14 A14 beta.-Myrcene
## 15 A15 Limonene
## 16 A16 Crotonic acid
## 17 A17 trans-.beta.-Ocimene
## 18 A18 Furfuryl methyl ether
## 19 A19 cis-ocimeno
## 20 A20 Pyrazine, methyl-
## 21 A21 Terpinolen
## 22 A22 Acetoin
## 23 A23 Acetol
## 24 A24 Pyrazine, 2,5-dimethyl-
## 25 A25 Pyrazine, 2,6-dimethyl-
## 26 A26 Pyrazine, ethyl-
## 27 A27 Pyrazine, 2,3-dimethyl-
## 28 A28 Glycidyl methyl ether
## 29 A29 2,4,6-Octatriene, 2,6-dimethyl-, (E,Z)-
## 30 A30 Pyrazine, 2-ethyl-6-methyl-
## 31 A31 Pyrazine, 2-ethyl-5-methyl
## 32 A32 Pyrazine, trimethyl-
## 33 A33 Vinylpyrazine
## 34 A34 Pyrazine, 3-ethyl-2,5-dimethyl-
## 35 A35 2,3-Diethylpyrazine
## 36 A36 2,6-Diethylpyrazine
## 37 A37 Pyrazine, 2-methyl-6-propyl-
## 38 A38 Furfural
## 39 A39 Pyrazine, 2-methyl-6-vinyl-
## 40 A40 Pyrazine, 3,5-diethyl-2-methyl-
## 41 A41 2,5-dimethyl-3(2H)-furanone
## 42 A42 Ethanone, 1-(2-furanyl)-
## 43 A43 2,3,5-Trimethyl-6-ethylpyrazine
## 44 A44 2-Butanone, 3,3-dimethyl-
## 45 A45 2-Furanmethanol, acetate
## 46 A46 LINALOOL L
## 47 A47 5 METHYL FURFURAL
## 48 A48 2,3-Butanediol
## 49 A49 Pyrazine, (1-methylethenyl)-
## 50 A50 5H-5-Methyl-6,7-dihydrocyclopentapyrazine
## 51 A51 2-Furancarboxaldehyde
## 52 A52 Ethanone, 1-(1-methyl-1H-pyrrol-2-yl)-
## 53 A53 2,3-Dimethyl-5-isopentylpyrazine
## 54 A54 2-Furanmethanol
## 55 A55 Succinic acid, diethyl ester
## 56 A56 1-(6-Methyl-2-pyrazinyl)-1-ethanone
## 57 A57 Butanoic acid, 3-methyl-
## 58 A58 .alpha.-Terpineol
## 59 A59 cis- Geranyl acetate
## 60 A60 4(H)-Pyridine, N-acetyl-
## 61 A61 Geranyl acetate
## 62 A62 Methyl Salicylate
## 63 A63 cis-Geraniol
## 64 A64 1H-Pyrrole, 1-(2-furanylmethyl)-
## 65 A65 Geraniol
## 66 A66 Mequinol
## 67 A67 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy-
## 68 A68 trans-Furfurylideneacetone
## 69 A69 Benzeneacetaldehyde, .alpha.-ethylidene-
## 70 A70 Maltol
## 71 A71 Ethanone, 1-(1H-pyrrol-2-yl)-
## 72 A72 4-Hydroxy-3-methylacetophenone
## 73 A73 1H-Pyrrole-2-carboxaldehyde
## 74 A74 2-Pyrrolidinone
## 75 A75 p-Ethylguaiacol
## 76 A76 Furaneol
## 77 A77 1H-Pyrrole-2-carboxaldehyde, 1-methyl-
## 78 A78 4-vinylguaiacol
## 79 A79 Palmitic acid
## 80 A80 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-
## 81 A81 Coumaran
## 82 A82 Caffeine
## 83 A83 3-Pyridinol
## 84 A84 Indole
## 85 A85 5-Hydroxymethylfurfural
## 86 A86 Linoleic acid ethyl ester
## Se toman en cuenta solo las interacciones doble y triples
metodo<-lm(Aroma~A7+A38+A54+A9+A49, data=mm0)
#summary(metodo)
plot(metodo$fitted.values,mm0$Aroma,xlim=c(7.8,9.0),ylim=c(7.8,9.0))
abline(0,1,col="blue")
print(summary(metodo))
##
## Call:
## lm(formula = Aroma ~ A7 + A38 + A54 + A9 + A49, data = mm0)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.07772 -0.02801 -0.01162 0.02450 0.10982
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.83920 0.34800 25.400 2.05e-10 ***
## A7 5.44456 0.91058 5.979 0.000136 ***
## A38 0.02943 0.01215 2.423 0.035884 *
## A54 -0.07932 0.02839 -2.794 0.018989 *
## A9 -0.74445 0.37310 -1.995 0.073963 .
## A49 -1.21023 0.36949 -3.275 0.008354 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06417 on 10 degrees of freedom
## Multiple R-squared: 0.8621, Adjusted R-squared: 0.7931
## F-statistic: 12.5 on 5 and 10 DF, p-value: 0.0004877