The attached who.csv dataset contains real-world data from 2008. The variables included follow. Country: name of the country LifeExp: average life expectancy for the country in years InfantSurvival: proportion of those surviving to one year or more Under5Survival: proportion of those surviving to five years or more TBFree: proportion of the population without TB. PropMD: proportion of the population who are MDs PropRN: proportion of the population who are RNs PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate TotExp: sum of personal and government expenditures.
Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.
Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.
Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model? LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp
Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# who <- read.csv('/Users/linda/Desktop/elearning/CUNY-MSDS/data 605/w12/who.csv')
who <- read.csv('https://raw.githubusercontent.com/yinaS1234/Data-605/main/w12/who.csv')
glimpse(who)
## Rows: 190
## Columns: 10
## $ Country <chr> "Afghanistan", "Albania", "Algeria", "Andorra", "Angola…
## $ LifeExp <int> 42, 71, 71, 82, 41, 73, 75, 69, 82, 80, 64, 74, 75, 63,…
## $ InfantSurvival <dbl> 0.835, 0.985, 0.967, 0.997, 0.846, 0.990, 0.986, 0.979,…
## $ Under5Survival <dbl> 0.743, 0.983, 0.962, 0.996, 0.740, 0.989, 0.983, 0.976,…
## $ TBFree <dbl> 0.99769, 0.99974, 0.99944, 0.99983, 0.99656, 0.99991, 0…
## $ PropMD <dbl> 0.000228841, 0.001143127, 0.001060478, 0.003297297, 0.0…
## $ PropRN <dbl> 0.000572294, 0.004614439, 0.002091362, 0.003500000, 0.0…
## $ PersExp <int> 20, 169, 108, 2589, 36, 503, 484, 88, 3181, 3788, 62, 1…
## $ GovtExp <int> 92, 3128, 5184, 169725, 1620, 12543, 19170, 1856, 18761…
## $ TotExp <int> 112, 3297, 5292, 172314, 1656, 13046, 19654, 1944, 1907…
summary(who)
## Country LifeExp InfantSurvival Under5Survival
## Length:190 Min. :40.00 Min. :0.8350 Min. :0.7310
## Class :character 1st Qu.:61.25 1st Qu.:0.9433 1st Qu.:0.9253
## Mode :character Median :70.00 Median :0.9785 Median :0.9745
## Mean :67.38 Mean :0.9624 Mean :0.9459
## 3rd Qu.:75.00 3rd Qu.:0.9910 3rd Qu.:0.9900
## Max. :83.00 Max. :0.9980 Max. :0.9970
## TBFree PropMD PropRN PersExp
## Min. :0.9870 Min. :0.0000196 Min. :0.0000883 Min. : 3.00
## 1st Qu.:0.9969 1st Qu.:0.0002444 1st Qu.:0.0008455 1st Qu.: 36.25
## Median :0.9992 Median :0.0010474 Median :0.0027584 Median : 199.50
## Mean :0.9980 Mean :0.0017954 Mean :0.0041336 Mean : 742.00
## 3rd Qu.:0.9998 3rd Qu.:0.0024584 3rd Qu.:0.0057164 3rd Qu.: 515.25
## Max. :1.0000 Max. :0.0351290 Max. :0.0708387 Max. :6350.00
## GovtExp TotExp
## Min. : 10.0 Min. : 13
## 1st Qu.: 559.5 1st Qu.: 584
## Median : 5385.0 Median : 5541
## Mean : 40953.5 Mean : 41696
## 3rd Qu.: 25680.2 3rd Qu.: 26331
## Max. :476420.0 Max. :482750
head(who)
## Country LifeExp InfantSurvival Under5Survival TBFree PropMD
## 1 Afghanistan 42 0.835 0.743 0.99769 0.000228841
## 2 Albania 71 0.985 0.983 0.99974 0.001143127
## 3 Algeria 71 0.967 0.962 0.99944 0.001060478
## 4 Andorra 82 0.997 0.996 0.99983 0.003297297
## 5 Angola 41 0.846 0.740 0.99656 0.000070400
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991 0.000142857
## PropRN PersExp GovtExp TotExp
## 1 0.000572294 20 92 112
## 2 0.004614439 169 3128 3297
## 3 0.002091362 108 5184 5292
## 4 0.003500000 2589 169725 172314
## 5 0.001146162 36 1620 1656
## 6 0.002773810 503 12543 13046
lr1 <- lm(LifeExp~TotExp, data=who)
plot(LifeExp~TotExp, data=who)
abline(lr1)
summary(lr1)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
par(mfrow=c(2,2))
plot(lr1)
F-statistic:65.26 is meaningless for single variable model
\(R^2\):0.2577 indicates a poorly fitting model as it is closer to 0
Standard Error:7.795e-06 Standard error 6.297e-05 /7.795e-06 approx = 8.07 The large ratio indicates little variability in the slope estimate
P-value:7.714e-14 < 0.05 which indicates statistical significance
Residuals Q-Q shows a obvious curve. This shows that the residuals may not be normally distributed.
The assumption of simple linear regression does NOT meet for lr1
who$LifeExpTran <- who$LifeExp^4.6
who$TotExpTran <- who$TotExp^.06
lr2 <- lm(LifeExpTran ~ TotExpTran, data=who)
plot(LifeExpTran~TotExpTran, data=who)
abline(lr2)
summary(lr2)
##
## Call:
## lm(formula = LifeExpTran ~ TotExpTran, data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## TotExpTran 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(lr2)
F-statistic:507.7 is meaningless for single variable model
\(R^2\):0.7298 much closer to 1,indicates a better fitting model
Standard Error:27518940 Standard error 620060216 /27518940 = 22.53213. The large ratio indicates little variability in the slope estimate
P-value:2.2e-16<0.05 indicates statistical significance
The summary statistics all indicate that the second model is a better model.
predicted_LifeExpTran <- predict(lr2, newdata=data.frame(TotExpTran=c(1.5, 2.5)))
LifeExp_co <- predicted_LifeExpTran^(1/4.6)
cat('Corresponding Life Expectencies: ', LifeExp_co)
## Corresponding Life Expectencies: 63.31153 86.50645
\(\approx\) 63 year life expectancy with 1.5 total expenditures and \(\approx\) 87 life expectancy with 2.5 total expenditures.
lr3 <- lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data=who)
summary(lr3)
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(lr3)
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced
F-statistic:34.49
\(R^2\):0.3574 it is much closer to 1 than 0
Standard Error:
2.788e+02 1.497e+03 / 2.788e+02 = 5.36944
8.982e-06 7.233e-05 / 8.982e-06 = 8.052772
1.472e-03 -6.026e-03/ 1.472e-03 =-4.09375
All of the standard error ratios are near 5-10 times smaller than the coefficients
predicted_LifeExpM <- predict(lr3, newdata=data.frame(PropMD=0.03,TotExp=14))
cat('Life Expectency of Multiple Regression Model: ', predicted_LifeExpM)
## Life Expectency of Multiple Regression Model: 107.696
Life expectancy of 107 years seems a little unrealistic. It is uncommon to live to the age of 107.