Problem Statement

The attached who.csv dataset contains real-world data from 2008. The variables included follow. Country: name of the country LifeExp: average life expectancy for the country in years InfantSurvival: proportion of those surviving to one year or more Under5Survival: proportion of those surviving to five years or more TBFree: proportion of the population without TB. PropMD: proportion of the population who are MDs PropRN: proportion of the population who are RNs PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate TotExp: sum of personal and government expenditures.

  1. Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.

  2. Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”

  3. Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.

  4. Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model? LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp

  5. Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?

library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

1

# who <- read.csv('/Users/linda/Desktop/elearning/CUNY-MSDS/data 605/w12/who.csv')
who <- read.csv('https://raw.githubusercontent.com/yinaS1234/Data-605/main/w12/who.csv')
glimpse(who)
## Rows: 190
## Columns: 10
## $ Country        <chr> "Afghanistan", "Albania", "Algeria", "Andorra", "Angola…
## $ LifeExp        <int> 42, 71, 71, 82, 41, 73, 75, 69, 82, 80, 64, 74, 75, 63,…
## $ InfantSurvival <dbl> 0.835, 0.985, 0.967, 0.997, 0.846, 0.990, 0.986, 0.979,…
## $ Under5Survival <dbl> 0.743, 0.983, 0.962, 0.996, 0.740, 0.989, 0.983, 0.976,…
## $ TBFree         <dbl> 0.99769, 0.99974, 0.99944, 0.99983, 0.99656, 0.99991, 0…
## $ PropMD         <dbl> 0.000228841, 0.001143127, 0.001060478, 0.003297297, 0.0…
## $ PropRN         <dbl> 0.000572294, 0.004614439, 0.002091362, 0.003500000, 0.0…
## $ PersExp        <int> 20, 169, 108, 2589, 36, 503, 484, 88, 3181, 3788, 62, 1…
## $ GovtExp        <int> 92, 3128, 5184, 169725, 1620, 12543, 19170, 1856, 18761…
## $ TotExp         <int> 112, 3297, 5292, 172314, 1656, 13046, 19654, 1944, 1907…
summary(who)
##    Country             LifeExp      InfantSurvival   Under5Survival  
##  Length:190         Min.   :40.00   Min.   :0.8350   Min.   :0.7310  
##  Class :character   1st Qu.:61.25   1st Qu.:0.9433   1st Qu.:0.9253  
##  Mode  :character   Median :70.00   Median :0.9785   Median :0.9745  
##                     Mean   :67.38   Mean   :0.9624   Mean   :0.9459  
##                     3rd Qu.:75.00   3rd Qu.:0.9910   3rd Qu.:0.9900  
##                     Max.   :83.00   Max.   :0.9980   Max.   :0.9970  
##      TBFree           PropMD              PropRN             PersExp       
##  Min.   :0.9870   Min.   :0.0000196   Min.   :0.0000883   Min.   :   3.00  
##  1st Qu.:0.9969   1st Qu.:0.0002444   1st Qu.:0.0008455   1st Qu.:  36.25  
##  Median :0.9992   Median :0.0010474   Median :0.0027584   Median : 199.50  
##  Mean   :0.9980   Mean   :0.0017954   Mean   :0.0041336   Mean   : 742.00  
##  3rd Qu.:0.9998   3rd Qu.:0.0024584   3rd Qu.:0.0057164   3rd Qu.: 515.25  
##  Max.   :1.0000   Max.   :0.0351290   Max.   :0.0708387   Max.   :6350.00  
##     GovtExp             TotExp      
##  Min.   :    10.0   Min.   :    13  
##  1st Qu.:   559.5   1st Qu.:   584  
##  Median :  5385.0   Median :  5541  
##  Mean   : 40953.5   Mean   : 41696  
##  3rd Qu.: 25680.2   3rd Qu.: 26331  
##  Max.   :476420.0   Max.   :482750
head(who)
##               Country LifeExp InfantSurvival Under5Survival  TBFree      PropMD
## 1         Afghanistan      42          0.835          0.743 0.99769 0.000228841
## 2             Albania      71          0.985          0.983 0.99974 0.001143127
## 3             Algeria      71          0.967          0.962 0.99944 0.001060478
## 4             Andorra      82          0.997          0.996 0.99983 0.003297297
## 5              Angola      41          0.846          0.740 0.99656 0.000070400
## 6 Antigua and Barbuda      73          0.990          0.989 0.99991 0.000142857
##        PropRN PersExp GovtExp TotExp
## 1 0.000572294      20      92    112
## 2 0.004614439     169    3128   3297
## 3 0.002091362     108    5184   5292
## 4 0.003500000    2589  169725 172314
## 5 0.001146162      36    1620   1656
## 6 0.002773810     503   12543  13046
lr1 <- lm(LifeExp~TotExp, data=who)
plot(LifeExp~TotExp, data=who)
abline(lr1)

summary(lr1)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = who)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14
par(mfrow=c(2,2))
plot(lr1)

F-statistic:65.26 is meaningless for single variable model

\(R^2\):0.2577 indicates a poorly fitting model as it is closer to 0

Standard Error:7.795e-06 Standard error 6.297e-05 /7.795e-06 approx = 8.07 The large ratio indicates little variability in the slope estimate

P-value:7.714e-14 < 0.05 which indicates statistical significance

Residuals Q-Q shows a obvious curve. This shows that the residuals may not be normally distributed.

The assumption of simple linear regression does NOT meet for lr1

2

who$LifeExpTran <- who$LifeExp^4.6
who$TotExpTran <- who$TotExp^.06

lr2 <- lm(LifeExpTran  ~ TotExpTran, data=who)
plot(LifeExpTran~TotExpTran, data=who)
abline(lr2)

summary(lr2)
## 
## Call:
## lm(formula = LifeExpTran ~ TotExpTran, data = who)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -736527910   46817945  -15.73   <2e-16 ***
## TotExpTran   620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(lr2)

F-statistic:507.7 is meaningless for single variable model

\(R^2\):0.7298 much closer to 1,indicates a better fitting model

Standard Error:27518940 Standard error 620060216 /27518940 = 22.53213. The large ratio indicates little variability in the slope estimate

P-value:2.2e-16<0.05 indicates statistical significance

The summary statistics all indicate that the second model is a better model.

3

predicted_LifeExpTran <- predict(lr2, newdata=data.frame(TotExpTran=c(1.5, 2.5)))
LifeExp_co <- predicted_LifeExpTran^(1/4.6)
cat('Corresponding Life Expectencies: ', LifeExp_co)
## Corresponding Life Expectencies:  63.31153 86.50645

\(\approx\) 63 year life expectancy with 1.5 total expenditures and \(\approx\) 87 life expectancy with 2.5 total expenditures.

4

lr3 <- lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data=who)
summary(lr3)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = who)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(lr3)
## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

## Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

F-statistic:34.49

\(R^2\):0.3574 it is much closer to 1 than 0

Standard Error:

2.788e+02 1.497e+03 / 2.788e+02 = 5.36944

8.982e-06 7.233e-05 / 8.982e-06 = 8.052772

1.472e-03 -6.026e-03/ 1.472e-03 =-4.09375

All of the standard error ratios are near 5-10 times smaller than the coefficients

5

predicted_LifeExpM <- predict(lr3, newdata=data.frame(PropMD=0.03,TotExp=14))

cat('Life Expectency of Multiple Regression Model: ', predicted_LifeExpM)
## Life Expectency of Multiple Regression Model:  107.696

Life expectancy of 107 years seems a little unrealistic. It is uncommon to live to the age of 107.