Linear Regression And Its Cousins

2024-03-31

Question 1:

Developing a model to predict permeability (see Sect. 1.4) could save significant resources for a pharmaceutical company, while at the same time more rapidly identifying molecules that have a sufficient permeability to become a drug:

*a) Start R and use these commands to load the data: >library(AppliedPredictiveModeling) >data(permeability) The matrix fingerprints contains the 1,107 binary molecular predictors for the 165 compounds, while permeability contains permeability response.

Answer:

data("permeability")
dim(fingerprints)
## [1]  165 1107
dim(permeability)
## [1] 165   1

The matrix fingerprints contains the 1,107 binary molecular predictors for the 165 compounds, while permeability contains permeability response.

b) The fingerprint predictors indicate the presence or absence of substructures of a molecule and are often sparse meaning that relatively few of the molecules contain each substructure. Filter out the predictors that have low frequencies using the nearZeroVar function from the caret package. How many predictors are left for modeling?

lowfreq <- nearZeroVar(fingerprints)
fingerprints <- fingerprints[, -lowfreq]

dim(fingerprints)
## [1] 165 388

There were 1,107 predictors and now there are only 388 predictors left for modeling.

c) Split the data into a training and a test set, pre-process the data, and tune a PLS model. How many latent variables are optimal and what is the corresponding resampled estimate of \(R^2\)?

set.seed(624)

# index for training
index <- createDataPartition(permeability, p = .8, list = FALSE)

# train 
train_perm <- permeability[index, ]
train_fp <- fingerprints[index, ]
# test
test_perm <- permeability[-index, ]
test_fp <- fingerprints [-index, ]

# 10-fold cross-validation to make reasonable estimates
ctrl <- trainControl(method = "cv", number = 10)

plsTune <- train(train_fp, train_perm, method = "pls", metric = "Rsquared",
             tuneLength = 20, trControl = ctrl, preProc = c("center", "scale"))

plot(plsTune)

plsTune
## Partial Least Squares 
## 
## 133 samples
## 388 predictors
## 
## Pre-processing: centered (388), scaled (388) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 118, 119, 120, 120, 121, 120, ... 
## Resampling results across tuning parameters:
## 
##   ncomp  RMSE      Rsquared   MAE      
##    1     13.25656  0.2953172  10.202424
##    2     11.90191  0.4662745   8.710959
##    3     12.05579  0.4624570   9.271134
##    4     12.03297  0.4793759   9.314195
##    5     12.06645  0.4870447   8.986610
##    6     11.82964  0.5012972   8.788270
##    7     11.91363  0.5011672   9.153386
##    8     11.79990  0.4960881   9.119966
##    9     11.81946  0.4959475   9.301787
##   10     11.85288  0.4924486   9.176136
##   11     11.79654  0.5025443   9.128199
##   12     11.62869  0.5131115   8.965070
##   13     11.78348  0.5080595   8.920097
##   14     12.01377  0.4935108   9.101865
##   15     12.09297  0.4862359   9.131109
##   16     12.10087  0.4953868   9.053161
##   17     12.38093  0.4847366   9.218277
##   18     12.59348  0.4768971   9.402569
##   19     12.61895  0.4807222   9.338592
##   20     12.77045  0.4682401   9.549745
## 
## Rsquared was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 12.

The optimal tuning had 12 components with a corresponding \(R^2\) of 0.5131115

d) Predict the response for the test set. What is the test set estimate of \(R^2\)

fp_predict <- predict(plsTune, test_fp)

postResample(fp_predict, test_perm)
##       RMSE   Rsquared        MAE 
## 11.4895371  0.4741832  9.3113125

The test set estimate of \(R^2\) is 0.4741832.

e) Try building other models discussed in this chapter. Do any have better predictive performance?

Elastic Net Regression Model:

set.seed(624)

# grid of penalties
enetGrid <- expand.grid(.lambda = c(0, 0.01, .1), .fraction = seq(.05, 1, length = 20))

# tuning penalized regression model
enetTune <- train(train_fp, train_perm, method = "enet",
                  tuneGrid = enetGrid, trControl = ctrl, preProc = c("center", "scale"))

plot(enetTune)

enetTune
## Elasticnet 
## 
## 133 samples
## 388 predictors
## 
## Pre-processing: centered (388), scaled (388) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 121, 118, 119, 121, 119, 120, ... 
## Resampling results across tuning parameters:
## 
##   lambda  fraction  RMSE      Rsquared   MAE      
##   0.00    0.05      12.53022  0.4195116   9.219840
##   0.00    0.10      11.83087  0.4482164   8.465318
##   0.00    0.15      11.94876  0.4475951   8.738893
##   0.00    0.20      11.98463  0.4484245   8.890257
##   0.00    0.25      11.79106  0.4640731   8.861128
##   0.00    0.30      11.66486  0.4742758   8.848355
##   0.00    0.35      11.72130  0.4749181   8.912993
##   0.00    0.40      11.90989  0.4695334   8.998669
##   0.00    0.45      12.30625  0.4529253   9.193462
##   0.00    0.50      12.68544  0.4362691   9.340897
##   0.00    0.55      13.00847  0.4214423   9.471613
##   0.00    0.60      13.29088  0.4089528   9.590155
##   0.00    0.65      13.44531  0.4004275   9.646439
##   0.00    0.70      13.61111  0.3907010   9.737890
##   0.00    0.75      13.82251  0.3811970   9.865902
##   0.00    0.80      13.94077  0.3755526   9.951804
##   0.00    0.85      14.00446  0.3726513  10.006198
##   0.00    0.90      14.15593  0.3660339  10.096242
##   0.00    0.95      14.35377  0.3580099  10.182112
##   0.00    1.00      14.48818  0.3547683  10.231509
##   0.01    0.05      12.91277  0.3962042   9.210662
##   0.01    0.10      14.49519  0.3998262  10.363051
##   0.01    0.15      16.02608  0.4115378  11.216868
##   0.01    0.20      17.63731  0.4189926  12.226957
##   0.01    0.25      19.54774  0.4096559  13.401832
##   0.01    0.30      21.65430  0.3895637  14.606572
##   0.01    0.35      23.60756  0.3748645  15.739320
##   0.01    0.40      25.60311  0.3611846  16.904536
##   0.01    0.45      27.57928  0.3504770  18.090540
##   0.01    0.50      29.55483  0.3408871  19.320808
##   0.01    0.55      31.52744  0.3320255  20.544216
##   0.01    0.60      33.47925  0.3280021  21.731405
##   0.01    0.65      35.46538  0.3231206  22.929380
##   0.01    0.70      37.43374  0.3183345  24.106466
##   0.01    0.75      39.37733  0.3156452  25.290183
##   0.01    0.80      41.31187  0.3139363  26.468389
##   0.01    0.85      43.29420  0.3110890  27.711822
##   0.01    0.90      45.37309  0.3072853  28.998914
##   0.01    0.95      47.41765  0.3041533  30.254470
##   0.01    1.00      49.32673  0.3034756  31.415359
##   0.10    0.05      12.55808  0.4101914   9.475823
##   0.10    0.10      12.00149  0.4328341   8.560342
##   0.10    0.15      12.08155  0.4311345   8.705317
##   0.10    0.20      12.22936  0.4267428   8.969534
##   0.10    0.25      12.11297  0.4349270   8.932117
##   0.10    0.30      12.04598  0.4378837   8.978154
##   0.10    0.35      12.04834  0.4369033   9.003314
##   0.10    0.40      12.08992  0.4341602   9.037805
##   0.10    0.45      12.16888  0.4291846   9.099988
##   0.10    0.50      12.25788  0.4233290   9.143842
##   0.10    0.55      12.32683  0.4187918   9.177390
##   0.10    0.60      12.41168  0.4130270   9.253065
##   0.10    0.65      12.47522  0.4078620   9.287724
##   0.10    0.70      12.53494  0.4039400   9.335168
##   0.10    0.75      12.58185  0.4016082   9.363731
##   0.10    0.80      12.61736  0.4001737   9.380885
##   0.10    0.85      12.65290  0.3987804   9.398010
##   0.10    0.90      12.69026  0.3974567   9.419637
##   0.10    0.95      12.73757  0.3953611   9.442814
##   0.10    1.00      12.77339  0.3939567   9.457362
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were fraction = 0.3 and lambda = 0.
enet_predict <- predict(enetTune, test_fp)

postResample(enet_predict, test_perm)
##       RMSE   Rsquared        MAE 
## 11.9836978  0.4157479  9.7314675

Least Angle Regression:

set.seed(624)

larsTune <- train(train_fp, train_perm, method = "lars", metric = "Rsquared",
                    tuneLength = 20, trControl = ctrl, preProc = c("center", "scale"))

plot(larsTune)

lars_predict <- predict(larsTune, test_fp)

postResample(lars_predict, test_perm)
##       RMSE   Rsquared        MAE 
## 11.6906258  0.4342625  9.6425013

f) Would you recommend any of your models to replace the permeability laboratory experiment?

I would recommend the Partial Least Squares model as it produced better statistics. It had a higher \(R^2\) and lower RMSE and MAE.


Question 2:

A chemical manufacturing process for a pharmaceutical product was discussed in Sect.1.4. In this problem, the objective is to understand the relationship between biological measurements of the raw materials (predictors), 6.5 Computing 139 measurements of the manufacturing process (predictors), and the response of product yield. Biological predictors cannot be changed but can be used to assess the quality of the raw material before processing. On the other hand, manufacturing process predictors can be changed in the manufacturing process. Improving product yield by 1% will boost revenue by approximately one hundred thousand dollars per batch:

a) Start R and use these commands to load the data: > library(AppliedPredictiveModeling) > data(chemicalManufacturing) The matrix processPredictors contains the 57 predictors (12 describing the input biological material and 45 describing the process predictors) for the 176 manufacturing runs. yield contains the percent yield for each run.

data("ChemicalManufacturingProcess")

b) A small percentage of cells in the predictor set contain missing values. Use an imputation function to fill in these missing values (e.g., see Sect. 3.8)

sum(is.na(ChemicalManufacturingProcess))
## [1] 106

Since we have 106 missing values in our data so in order to feed the data to model we have to take care of that so let’s impute.

miss <- preProcess(ChemicalManufacturingProcess, method = "bagImpute")
Chemical <- predict(miss, ChemicalManufacturingProcess)

There were 106 missing values in ChemicalManufacturingProcess. Bagged trees were used to impute the data. Bagged trees are made using all the other variables.

sum(is.na(Chemical))
## [1] 0

As we can see that we have no missing values in our data now.

c) Split the data into a training and a test set, pre-process the data, and tune a model of your choice from this chapter. What is the optimal value of the performance metric?

Before creating model of choice let’s split our data into testing and training.

set.seed(624)
Chemical <- Chemical[, -nearZeroVar(Chemical)]

# index for training
index <- createDataPartition(Chemical$Yield, p = .8, list = FALSE)

# train 
train_chem <- Chemical[index, ]

# test
test_chem <- Chemical[-index, ]

Now that our data has been split let’s create model

Partial Least Sqaures (PLS):

set.seed(624)

plsTune <- train(Yield ~ ., Chemical , method = "pls", 
             tuneLength = 20, trControl = ctrl, preProc = c("center", "scale"))

plot(plsTune) 

plsTune
## Partial Least Squares 
## 
## 176 samples
##  56 predictor
## 
## Pre-processing: centered (56), scaled (56) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 160, 157, 158, 159, 158, 159, ... 
## Resampling results across tuning parameters:
## 
##   ncomp  RMSE      Rsquared   MAE     
##    1     1.436891  0.4568805  1.147590
##    2     1.872742  0.4711564  1.185897
##    3     1.292614  0.5633698  1.020010
##    4     1.480526  0.5381868  1.085319
##    5     1.707358  0.5156812  1.131007
##    6     1.821904  0.4903840  1.156300
##    7     2.006142  0.4802835  1.211850
##    8     2.092370  0.4622998  1.253598
##    9     2.220647  0.4485854  1.290999
##   10     2.322021  0.4410360  1.315081
##   11     2.446697  0.4264842  1.352393
##   12     2.475260  0.4206118  1.367989
##   13     2.464162  0.4197124  1.377783
##   14     2.418661  0.4227280  1.364288
##   15     2.375812  0.4242080  1.350175
##   16     2.368363  0.4267259  1.337946
##   17     2.386174  0.4254577  1.339398
##   18     2.376321  0.4271412  1.334877
##   19     2.400843  0.4255697  1.348122
##   20     2.422785  0.4231162  1.359970
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 3.

Optimal tuning has 3 components with \(R^2\) of 0.56337.

Least Angle Regression (LAR):

set.seed(624)

larsTune <- train(Yield ~ ., Chemical , method = "lars", metric = "Rsquared",
                    tuneLength = 20, trControl = ctrl, preProc = c("center", "scale"))

plot(larsTune)

larsTune
## Least Angle Regression 
## 
## 176 samples
##  56 predictor
## 
## Pre-processing: centered (56), scaled (56) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 160, 157, 158, 159, 158, 159, ... 
## Resampling results across tuning parameters:
## 
##   fraction  RMSE      Rsquared   MAE     
##   0.05      1.268059  0.6252093  1.037325
##   0.10      1.157751  0.6229682  0.936117
##   0.15      1.163964  0.6233226  0.922333
##   0.20      1.425304  0.5567018  1.005712
##   0.25      1.717206  0.4959408  1.101890
##   0.30      1.936760  0.4676172  1.176116
##   0.35      1.922115  0.4611422  1.188942
##   0.40      1.875680  0.4585226  1.187174
##   0.45      1.838067  0.4577825  1.183074
##   0.50      1.731858  0.4637976  1.161242
##   0.55      1.508554  0.4924491  1.104212
##   0.60      1.286634  0.5676612  1.027343
##   0.65      1.637094  0.4985405  1.138608
##   0.70      2.069278  0.4782574  1.247884
##   0.75      2.478866  0.4698927  1.355965
##   0.80      2.854003  0.4595411  1.460073
##   0.85      3.231161  0.4425963  1.561937
##   0.90      3.619450  0.4262587  1.662857
##   0.95      4.056912  0.4124876  1.774808
##   1.00      4.501021  0.4019904  1.887089
## 
## Rsquared was used to select the optimal model using the largest value.
## The final value used for the model was fraction = 0.05.

The optimal model has a fraction of 0.05 and \(R^2\) of 0.6252.

Ridge:

set.seed(624)

## Define the candidate set of values
ridgeGrid <- data.frame(.lambda = seq(0, .1, length = 15))

ridgeTune <- train(Yield ~ ., Chemical , method = "ridge",
                     tuneGrid = ridgeGrid, trControl = ctrl, preProc = c("center", "scale"))

plot(ridgeTune)

ridgeTune
## Ridge Regression 
## 
## 176 samples
##  56 predictor
## 
## Pre-processing: centered (56), scaled (56) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 160, 157, 158, 159, 158, 159, ... 
## Resampling results across tuning parameters:
## 
##   lambda       RMSE      Rsquared   MAE     
##   0.000000000  4.501021  0.4019904  1.887089
##   0.007142857  1.951471  0.4493837  1.224896
##   0.014285714  2.093121  0.4429601  1.247997
##   0.021428571  2.098017  0.4475006  1.242244
##   0.028571429  2.077066  0.4519785  1.232565
##   0.035714286  2.050861  0.4560167  1.222873
##   0.042857143  2.024673  0.4596597  1.213933
##   0.050000000  1.999988  0.4629748  1.206382
##   0.057142857  1.977156  0.4660169  1.200121
##   0.064285714  1.956157  0.4688278  1.194388
##   0.071428571  1.936855  0.4714397  1.189526
##   0.078571429  1.919085  0.4738781  1.185097
##   0.085714286  1.902686  0.4761635  1.180984
##   0.092857143  1.887513  0.4783129  1.177421
##   0.100000000  1.873437  0.4803403  1.174175
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was lambda = 0.1.

The optimal model has λ of 0.1 and \(R^2\) of 0.4803403.

d) Predict the response for the test set. What is the value of the performance metric and how does this compare with the resampled performance metric on the training set?

Since we tried our three models in our previous steps so out of those three the lars method was chosen as it had the highest \(R^2\).

lars_predict <- predict(larsTune, test_chem[ ,-1])

postResample(lars_predict, test_chem[ ,1])
##     RMSE Rsquared      MAE 
## 1.399505 0.718109 1.095894

The \(R^2\) is 0.718109, which is higher than the training set.

e) Which predictors are most important in the model you have trained? Do either the biological or process predictors dominate the list?

varImp(larsTune)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 56)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess13   90.02
## BiologicalMaterial06     84.56
## ManufacturingProcess36   76.03
## ManufacturingProcess17   74.88
## BiologicalMaterial03     73.53
## ManufacturingProcess09   70.37
## BiologicalMaterial12     67.98
## BiologicalMaterial02     65.33
## ManufacturingProcess31   60.38
## ManufacturingProcess06   58.03
## ManufacturingProcess33   49.39
## BiologicalMaterial11     48.11
## BiologicalMaterial04     47.13
## ManufacturingProcess11   42.47
## BiologicalMaterial08     41.88
## BiologicalMaterial01     39.14
## ManufacturingProcess12   33.02
## ManufacturingProcess30   32.91
## BiologicalMaterial09     32.41

The 5 most important variables used in the modeling are ManufacturingProcess32, ManufacturingProcess13, BiologicalMaterial06, ManufacturingProcess36, and ManufacturingProcess17. Process predictors dominate the list. The ratio of process to biological predictors is 11:9.

f) Explore the relationships between each of the top predictors and the response. How could this information be helpful in improving yield in future runs of the manufacturing process?

top10 <- varImp(larsTune)$importance %>%
  arrange(-Overall) %>%
  head(10)
Chemical %>%
  select(c("Yield", row.names(top10))) %>%
  cor() %>%
  corrplot()

Based on the correlation plot analysis, ManufacturingProcess32 exhibits the strongest positive correlation with Yield. Conversely, three out of the top ten variables display negative correlations with Yield. This insight could prove valuable in future iterations of the manufacturing process, as these predictors significantly influence yield. To enhance yield maximization or improvement efforts, optimizing measurements related to the manufacturing process and biological characteristics of raw materials may be beneficial.