Data

Preprocessing

Result 1: Original Study

  1. original study - contrary to our hypothesis, finds influencer ads are less persuasive

Result 2: Replicate with Larger Sample

  1. study you just ran - replicates this finding with larger sample, looks at individual diff moderation etc

Moderation Analysis (Only for Aggregate Outcome)

Aggregate

## OLS estimation, Dep. Var.: Aggregate
## Observations: 4,920 
## Fixed-effects: ResponseId: 984,  Brand: 10
## Standard-errors: Clustered (ResponseId) 
##                               Estimate Std. Error   t value Pr(>|t|)    
## Treatment                     0.024765   0.114192  0.216871 0.828354    
## Treatment:TikTokYes           0.097155   0.053589  1.812959 0.070143 .  
## Treatment:InstagramYes       -0.076421   0.047144 -1.621018 0.105334    
## Treatment:SnapchatYes         0.043856   0.050198  0.873668 0.382513    
## Treatment:YouTubeYes         -0.068990   0.046790 -1.474445 0.140682    
## Treatment:buys_off_socialYes  0.071320   0.043422  1.642464 0.100814    
## Treatment:social_usageHigh   -0.079431   0.049561 -1.602683 0.109326    
## Treatment:youngYes           -0.007356   0.067987 -0.108203 0.913857    
## Treatment:age                -0.000198   0.001677 -0.118204 0.905931    
## ... 8 variables were removed because of collinearity (TikTokYes, InstagramYes and 6 others [full set in $collin.var])
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.547325     Adj. R2: 0.593548
##                  Within R2: 0.004689

Feelings

## OLS estimation, Dep. Var.: Feelings
## Observations: 4,920 
## Fixed-effects: ResponseId: 984,  Brand: 10
## Standard-errors: Clustered (ResponseId) 
##                               Estimate Std. Error   t value Pr(>|t|)    
## Treatment                     0.129174   0.122940  1.050712 0.293649    
## Treatment:TikTokYes           0.093783   0.059107  1.586676 0.112908    
## Treatment:InstagramYes       -0.105515   0.050325 -2.096685 0.036277 *  
## Treatment:SnapchatYes         0.032464   0.054900  0.591339 0.554429    
## Treatment:YouTubeYes         -0.080173   0.051189 -1.566217 0.117620    
## Treatment:buys_off_socialYes  0.095205   0.046825  2.033206 0.042300 *  
## Treatment:social_usageHigh   -0.109547   0.056034 -1.955025 0.050863 .  
## Treatment:youngYes           -0.059381   0.079027 -0.751402 0.452590    
## Treatment:age                -0.001614   0.001822 -0.885425 0.376144    
## ... 8 variables were removed because of collinearity (TikTokYes, InstagramYes and 6 others [full set in $collin.var])
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.597264     Adj. R2: 0.511577
##                  Within R2: 0.00559

Trustworthy

## OLS estimation, Dep. Var.: Trustworthy
## Observations: 4,920 
## Fixed-effects: ResponseId: 984,  Brand: 10
## Standard-errors: Clustered (ResponseId) 
##                               Estimate Std. Error   t value Pr(>|t|)    
## Treatment                     0.044018   0.125871  0.349707 0.726633    
## Treatment:TikTokYes           0.101130   0.060245  1.678637 0.093541 .  
## Treatment:InstagramYes       -0.063705   0.053351 -1.194085 0.232733    
## Treatment:SnapchatYes         0.070215   0.060246  1.165464 0.244114    
## Treatment:YouTubeYes         -0.073798   0.052570 -1.403790 0.160697    
## Treatment:buys_off_socialYes  0.069323   0.047545  1.458049 0.145146    
## Treatment:social_usageHigh   -0.070994   0.054503 -1.302570 0.193027    
## Treatment:youngYes           -0.118686   0.080043 -1.482785 0.138452    
## Treatment:age                -0.000730   0.001864 -0.391523 0.695495    
## ... 8 variables were removed because of collinearity (TikTokYes, InstagramYes and 6 others [full set in $collin.var])
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.598454     Adj. R2: 0.496587
##                  Within R2: 0.004808

PurchaseIntention

## OLS estimation, Dep. Var.: Purchase
## Observations: 4,920 
## Fixed-effects: ResponseId: 984,  Brand: 10
## Standard-errors: Clustered (ResponseId) 
##                               Estimate Std. Error   t value Pr(>|t|)    
## Treatment                    -0.098898   0.163177 -0.606077 0.544603    
## Treatment:TikTokYes           0.096551   0.071993  1.341117 0.180192    
## Treatment:InstagramYes       -0.060043   0.063889 -0.939810 0.347546    
## Treatment:SnapchatYes         0.028889   0.070858  0.407695 0.683586    
## Treatment:YouTubeYes         -0.052998   0.064906 -0.816540 0.414389    
## Treatment:buys_off_socialYes  0.049431   0.060238  0.820595 0.412076    
## Treatment:social_usageHigh   -0.057752   0.067517 -0.855365 0.392558    
## Treatment:youngYes            0.155998   0.092398  1.688331 0.091665 .  
## Treatment:age                 0.001749   0.002339  0.747814 0.454751    
## ... 8 variables were removed because of collinearity (TikTokYes, InstagramYes and 6 others [full set in $collin.var])
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.753257     Adj. R2: 0.586943
##                  Within R2: 0.002434

PCA Analysis on Moderators

## Importance of components:
##                           PC1    PC2    PC3     PC4    PC5    PC6     PC7
## Standard deviation     1.8135 1.0081 0.9241 0.87381 0.8114 0.7600 0.70668
## Proportion of Variance 0.4111 0.1270 0.1067 0.09544 0.0823 0.0722 0.06242
## Cumulative Proportion  0.4111 0.5381 0.6449 0.74032 0.8226 0.8948 0.95724
##                            PC8
## Standard deviation     0.58489
## Proportion of Variance 0.04276
## Cumulative Proportion  1.00000
## OLS estimation, Dep. Var.: Aggregate
## Observations: 4,920 
## Fixed-effects: ResponseId: 984,  Brand: 10
## Standard-errors: Clustered (ResponseId) 
##                Estimate Std. Error   t value Pr(>|t|)    
## Treatment     -0.043009   0.019235 -2.235949 0.025579 *  
## Treatment:PC1  0.005296   0.010508  0.503982 0.614387    
## Treatment:PC2 -0.014620   0.018819 -0.776901 0.437404    
## Treatment:PC3  0.042292   0.020657  2.047312 0.040893 *  
## Treatment:PC4 -0.010881   0.022430 -0.485114 0.627704    
## Treatment:PC5  0.043072   0.024865  1.732263 0.083540 .  
## Treatment:PC6 -0.057985   0.026718 -2.170227 0.030229 *  
## Treatment:PC7 -0.010752   0.027385 -0.392630 0.694678    
## Treatment:PC8 -0.012252   0.033010 -0.371158 0.710600    
## ... 8 variables were removed because of collinearity (PC1, PC2 and 6 others [full set in $collin.var])
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.547325     Adj. R2: 0.593548
##                  Within R2: 0.004689

Result 3: Mediation Question Treatment Effect

  1. additional qs study - shows potentially relevant dimensions on which influencer v traditional ads differ - finds no diff in persuasiveness for influencer v traditional (prob bc asking other qs messed up those outcomes) so can’t do normal mediation analysis

Mechanism Question Treatment Effect

Result 4: Mechanism Analysis

  1. instead we do item-level mediation analysis where for each of the 20 ads, we calculate persuasiveness (using agg outcome pooling across data from 1 and 2 above) and then do meta-regression predicting persuasiveness using influencer dummy (which should find sig neg effect), and then do that again also including avg value of different additional qs from 3 to see which ones reduce influencer effect size (do you see what i mean?)
## 
## Multivariate Meta-Analysis Model (k = 10; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.0238  0.1544     10     no    term 
## 
## Test for Heterogeneity:
## Q(df = 9) = 82.7118, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub    
##  -0.0501  0.0517  -0.9692  0.3324  -0.1514  0.0512    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Belief

## 
## Multivariate Meta-Analysis Model (k = 10; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.0142  0.1190     10     no    term 
## 
## Test for Residual Heterogeneity:
## QE(df = 8) = 47.2366, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 6.1000, p-val = 0.0135
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb    ci.ub    
## intrcpt                   -0.0960  0.0453  -2.1201  0.0340  -0.1848  -0.0073  * 
## fit_out_belief$estimate    0.4934  0.1998   2.4698  0.0135   0.1018   0.8849  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Connectedness

## 
## Multivariate Meta-Analysis Model (k = 10; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.0078  0.0885     10     no    term 
## 
## Test for Residual Heterogeneity:
## QE(df = 8) = 29.6266, p-val = 0.0002
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 14.3944, p-val = 0.0001
## 
## Model Results:
## 
##                                 estimate      se     zval    pval    ci.lb 
## intrcpt                          -0.0558  0.0327  -1.7031  0.0885  -0.1200 
## fit_out_connectedness$estimate    0.8418  0.2219   3.7940  0.0001   0.4070 
##                                  ci.ub      
## intrcpt                         0.0084    . 
## fit_out_connectedness$estimate  1.2767  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Informative

## 
## Multivariate Meta-Analysis Model (k = 10; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.0115  0.1075     10     no    term 
## 
## Test for Residual Heterogeneity:
## QE(df = 8) = 40.4665, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 8.6729, p-val = 0.0032
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                        -0.0792  0.0393  -2.0178  0.0436  -0.1561 
## fit_out_informative$estimate    0.4043  0.1373   2.9450  0.0032   0.1352 
##                                 ci.ub     
## intrcpt                       -0.0023   * 
## fit_out_informative$estimate   0.6733  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Properties

## 
## Multivariate Meta-Analysis Model (k = 10; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.0079  0.0891     10     no    term 
## 
## Test for Residual Heterogeneity:
## QE(df = 8) = 30.3853, p-val = 0.0002
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 14.2394, p-val = 0.0002
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb 
## intrcpt                       -0.0913  0.0347  -2.6355  0.0084  -0.1593 
## fit_out_properties$estimate    0.6132  0.1625   3.7735  0.0002   0.2947 
##                                ci.ub      
## intrcpt                      -0.0234   ** 
## fit_out_properties$estimate   0.9316  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Quality

## 
## Multivariate Meta-Analysis Model (k = 10; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.0168  0.1296     10     no    term 
## 
## Test for Residual Heterogeneity:
## QE(df = 8) = 55.3581, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.2456, p-val = 0.0394
## 
## Model Results:
## 
##                           estimate      se    zval    pval    ci.lb   ci.ub    
## intrcpt                     0.0427  0.0632  0.6757  0.4992  -0.0811  0.1665    
## fit_out_quality$estimate    0.7147  0.3469  2.0605  0.0394   0.0349  1.3946  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

All

## 
## Multivariate Meta-Analysis Model (k = 10; method: REML)
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.0036  0.0601     10     no    term 
## 
## Test for Residual Heterogeneity:
## QE(df = 4) = 9.0117, p-val = 0.0608
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 32.9435, p-val < .0001
## 
## Model Results:
## 
##                                 estimate      se     zval    pval    ci.lb 
## intrcpt                          -0.0069  0.0571  -0.1207  0.9040  -0.1189 
## fit_out_quality$estimate          0.1545  0.3754   0.4117  0.6806  -0.5812 
## fit_out_properties$estimate       1.3802  0.5258   2.6250  0.0087   0.3497 
## fit_out_informative$estimate     -0.8733  0.4993  -1.7493  0.0802  -1.8519 
## fit_out_connectedness$estimate    1.4342  0.5784   2.4796  0.0132   0.3006 
## fit_out_belief$estimate          -0.6831  0.4304  -1.5872  0.1125  -1.5266 
##                                  ci.ub     
## intrcpt                         0.1051     
## fit_out_quality$estimate        0.8903     
## fit_out_properties$estimate     2.4108  ** 
## fit_out_informative$estimate    0.1052   . 
## fit_out_connectedness$estimate  2.5678   * 
## fit_out_belief$estimate         0.1604     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Result 5: Analogus to Swiping on TikTok

1-4 shows that influencer ads are less persuasive and gives insight into why. finally, we test another potential advantage of influencer content - do people prefer to watch it? let people skip videos (analgous to swiping on tiktok) and mix ads in with good non-ad content. find that people do watch influencer ads for slightlly longer than traditional ads, but difference is small and likely not very economically meaningful. also, no diff in persusiveness of traditional v influencer ads here

Time Spent

## OLS estimation, Dep. Var.: Time
## Observations: 3,675 
## Fixed-effects: ResponseId: 735,  Brand: 10
## Standard-errors: Clustered (ResponseId) 
##           Estimate Std. Error t value Pr(>|t|)    
## Treatment  3.21099    1.38411 2.31989  0.02062 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 40.3     Adj. R2: 0.166665
##              Within R2: 0.001234

Purchase Intention and Feelings

Note There seems to be some errors in the data. So I filtered out participants who had more than 5 rows in the panel data. I did not filter based on whether they recognize the brand was shown in the survey or not.