Smith is in jail and has 1 dollar; he can get out on bail if he has 8 dollars.A guard agrees to make a series of bets with him. If Smith bets A dollars,he wins A dollars with probability .4 and loses A dollars with probability .6. Find the probability that he wins 8 dollars before losing all of his money if: (a) he bets 1 dollar each time (timid strategy). (b) he bets, each time, as much as possible but not more than necessary to bring his fortune up to 8 dollars (bold strategy). (c) Which strategy gives Smith the better chance of getting out of jail?

# Function to simulate one round of betting
simulate_bet <- function(wager) {
  outcome <- sample(c(-wager, wager), size = 1, prob = c(0.6, 0.4))
  return(outcome)
}

# Function for the timid strategy
timid_strategy <- function(starting_money, bail_amount, bet_amount) {
  money <- starting_money
  while (money < bail_amount && money > 0) {
    money <- money + simulate_bet(bet_amount)
  }
  return(money >= bail_amount)
}

# Function for the bold strategy
bold_strategy <- function(starting_money, bail_amount) {
  money <- starting_money
  bet_amount <- min(8 - money, money)
  while (money < bail_amount && money > 0) {
    money <- money + simulate_bet(bet_amount)
    bet_amount <- min(8 - money, money)
  }
  return(money >= bail_amount)
}

# Simulate timid strategy
timid_wins <- replicate(10000, timid_strategy(1, 8, 1))
timid_probability <- mean(timid_wins)

# Simulate bold strategy
bold_wins <- replicate(10000, bold_strategy(1, 8))
bold_probability <- mean(bold_wins)

cat("Probability of winning with timid strategy:", timid_probability, "\n")
## Probability of winning with timid strategy: 0.0197
cat("Probability of winning with bold strategy:", bold_probability, "\n")
## Probability of winning with bold strategy: 0.0644
if (timid_probability > bold_probability) {
  cat("Timid strategy gives Smith a better chance of getting out of jail.\n")
} else if (bold_probability > timid_probability) {
  cat("Bold strategy gives Smith a better chance of getting out of jail.\n")
} else {
  cat("Both strategies have the same chance of getting Smith out of jail.\n")
}
## Bold strategy gives Smith a better chance of getting out of jail.

LS0tDQp0aXRsZTogIldlZWsgMTAgSG9tZXdvcmsiDQphdXRob3I6ICJLb3NzaSBBa3BsYWthIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQNCi0tLQ0KDQpTbWl0aCBpcyBpbiBqYWlsIGFuZCBoYXMgMSBkb2xsYXI7IGhlIGNhbiBnZXQgb3V0IG9uIGJhaWwgaWYgaGUgaGFzIDggZG9sbGFycy5BIGd1YXJkIGFncmVlcyB0byBtYWtlIGEgc2VyaWVzIG9mIGJldHMgd2l0aCBoaW0uIElmIFNtaXRoIGJldHMgQSBkb2xsYXJzLGhlIHdpbnMgQSBkb2xsYXJzIHdpdGggcHJvYmFiaWxpdHkgLjQgYW5kIGxvc2VzIEEgZG9sbGFycyB3aXRoIHByb2JhYmlsaXR5IC42Lg0KRmluZCB0aGUgcHJvYmFiaWxpdHkgdGhhdCBoZSB3aW5zIDggZG9sbGFycyBiZWZvcmUgbG9zaW5nIGFsbCBvZiBoaXMgbW9uZXkgaWY6IA0KKGEpIGhlIGJldHMgMSBkb2xsYXIgZWFjaCB0aW1lICh0aW1pZCBzdHJhdGVneSkuDQooYikgaGUgYmV0cywgZWFjaCB0aW1lLCBhcyBtdWNoIGFzIHBvc3NpYmxlIGJ1dCBub3QgbW9yZSB0aGFuIG5lY2Vzc2FyeSB0byBicmluZyBoaXMgZm9ydHVuZSB1cCB0byA4IGRvbGxhcnMgKGJvbGQgc3RyYXRlZ3kpLg0KKGMpIFdoaWNoIHN0cmF0ZWd5IGdpdmVzIFNtaXRoIHRoZSBiZXR0ZXIgY2hhbmNlIG9mIGdldHRpbmcgb3V0IG9mIGphaWw/DQoNCg0KYGBge3J9DQojIEZ1bmN0aW9uIHRvIHNpbXVsYXRlIG9uZSByb3VuZCBvZiBiZXR0aW5nDQpzaW11bGF0ZV9iZXQgPC0gZnVuY3Rpb24od2FnZXIpIHsNCiAgb3V0Y29tZSA8LSBzYW1wbGUoYygtd2FnZXIsIHdhZ2VyKSwgc2l6ZSA9IDEsIHByb2IgPSBjKDAuNiwgMC40KSkNCiAgcmV0dXJuKG91dGNvbWUpDQp9DQoNCiMgRnVuY3Rpb24gZm9yIHRoZSB0aW1pZCBzdHJhdGVneQ0KdGltaWRfc3RyYXRlZ3kgPC0gZnVuY3Rpb24oc3RhcnRpbmdfbW9uZXksIGJhaWxfYW1vdW50LCBiZXRfYW1vdW50KSB7DQogIG1vbmV5IDwtIHN0YXJ0aW5nX21vbmV5DQogIHdoaWxlIChtb25leSA8IGJhaWxfYW1vdW50ICYmIG1vbmV5ID4gMCkgew0KICAgIG1vbmV5IDwtIG1vbmV5ICsgc2ltdWxhdGVfYmV0KGJldF9hbW91bnQpDQogIH0NCiAgcmV0dXJuKG1vbmV5ID49IGJhaWxfYW1vdW50KQ0KfQ0KDQojIEZ1bmN0aW9uIGZvciB0aGUgYm9sZCBzdHJhdGVneQ0KYm9sZF9zdHJhdGVneSA8LSBmdW5jdGlvbihzdGFydGluZ19tb25leSwgYmFpbF9hbW91bnQpIHsNCiAgbW9uZXkgPC0gc3RhcnRpbmdfbW9uZXkNCiAgYmV0X2Ftb3VudCA8LSBtaW4oOCAtIG1vbmV5LCBtb25leSkNCiAgd2hpbGUgKG1vbmV5IDwgYmFpbF9hbW91bnQgJiYgbW9uZXkgPiAwKSB7DQogICAgbW9uZXkgPC0gbW9uZXkgKyBzaW11bGF0ZV9iZXQoYmV0X2Ftb3VudCkNCiAgICBiZXRfYW1vdW50IDwtIG1pbig4IC0gbW9uZXksIG1vbmV5KQ0KICB9DQogIHJldHVybihtb25leSA+PSBiYWlsX2Ftb3VudCkNCn0NCg0KIyBTaW11bGF0ZSB0aW1pZCBzdHJhdGVneQ0KdGltaWRfd2lucyA8LSByZXBsaWNhdGUoMTAwMDAsIHRpbWlkX3N0cmF0ZWd5KDEsIDgsIDEpKQ0KdGltaWRfcHJvYmFiaWxpdHkgPC0gbWVhbih0aW1pZF93aW5zKQ0KDQojIFNpbXVsYXRlIGJvbGQgc3RyYXRlZ3kNCmJvbGRfd2lucyA8LSByZXBsaWNhdGUoMTAwMDAsIGJvbGRfc3RyYXRlZ3koMSwgOCkpDQpib2xkX3Byb2JhYmlsaXR5IDwtIG1lYW4oYm9sZF93aW5zKQ0KDQpjYXQoIlByb2JhYmlsaXR5IG9mIHdpbm5pbmcgd2l0aCB0aW1pZCBzdHJhdGVneToiLCB0aW1pZF9wcm9iYWJpbGl0eSwgIlxuIikNCmNhdCgiUHJvYmFiaWxpdHkgb2Ygd2lubmluZyB3aXRoIGJvbGQgc3RyYXRlZ3k6IiwgYm9sZF9wcm9iYWJpbGl0eSwgIlxuIikNCg0KDQppZiAodGltaWRfcHJvYmFiaWxpdHkgPiBib2xkX3Byb2JhYmlsaXR5KSB7DQogIGNhdCgiVGltaWQgc3RyYXRlZ3kgZ2l2ZXMgU21pdGggYSBiZXR0ZXIgY2hhbmNlIG9mIGdldHRpbmcgb3V0IG9mIGphaWwuXG4iKQ0KfSBlbHNlIGlmIChib2xkX3Byb2JhYmlsaXR5ID4gdGltaWRfcHJvYmFiaWxpdHkpIHsNCiAgY2F0KCJCb2xkIHN0cmF0ZWd5IGdpdmVzIFNtaXRoIGEgYmV0dGVyIGNoYW5jZSBvZiBnZXR0aW5nIG91dCBvZiBqYWlsLlxuIikNCn0gZWxzZSB7DQogIGNhdCgiQm90aCBzdHJhdGVnaWVzIGhhdmUgdGhlIHNhbWUgY2hhbmNlIG9mIGdldHRpbmcgU21pdGggb3V0IG9mIGphaWwuXG4iKQ0KfQ0KDQpgYGANCg0KLi4uDQoNCg==