24_03.28 - Qualifications Study Pilot 4

Checking Randomization

Distribution of responses

Note: “focalman” and “focalwoman” indicate the which columns the focal man and focal woman are in.

(as.data.frame(with(qual_test, table(worked, deiexpert, focal_man, focalman, focal_woman, focalwoman))) %>%
  filter(Freq > 0))%>%
  arrange(worked, desc(Freq), deiexpert, focalman, focalwoman)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vq ~ deiexpert_f * targgender + (1 | person) + (1 | pid)
##    Data: qual_clean_long4
## 
## REML criterion at convergence: 6944
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.454 -0.546  0.023  0.628  2.979 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.800    0.895   
##  person   (Intercept) 0.393    0.627   
##  Residual             1.417    1.191   
## Number of obs: 1988, groups:  pid, 497; person, 4
## 
## Fixed effects:
##                                     Estimate Std. Error       df t value             Pr(>|t|)    
## (Intercept)                            5.123      0.455    2.187   11.27              0.00561 ** 
## deiexpert_fDEI-None                   -0.639      0.135  818.069   -4.73            0.0000027 ***
## deiexpert_fTrad                        0.221      0.141  818.069    1.56              0.11812    
## targgenderWoman                       -0.332      0.634    2.071   -0.52              0.65173    
## deiexpert_fDEI-None:targgenderWoman    1.134      0.131 1486.000    8.66 < 0.0000000000000002 ***
## deiexpert_fTrad:targgenderWoman       -0.489      0.137 1486.000   -3.57              0.00037 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dx_DEI-N dxpr_T trggnW d_DEI-N:
## dxprt_DEI-N -0.171                                
## dexprt_fTrd -0.163  0.549                         
## targgndrWmn -0.698  0.057    0.055                
## dxp_DEI-N:W  0.083 -0.485   -0.266 -0.118         
## dxprt_fTr:W  0.079 -0.266   -0.485 -0.113  0.549
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vs ~ deiexpert_f * targgender + (1 | person) + (1 | pid)
##    Data: qual_clean_long4
## 
## REML criterion at convergence: 7162
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.339 -0.561  0.049  0.600  2.722 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.011    1.006   
##  person   (Intercept) 0.365    0.604   
##  Residual             1.541    1.241   
## Number of obs: 1988, groups:  pid, 497; person, 4
## 
## Fixed effects:
##                                     Estimate Std. Error       df t value             Pr(>|t|)    
## (Intercept)                            5.066      0.441    2.242   11.48              0.00490 ** 
## deiexpert_fDEI-None                   -0.623      0.147  784.251   -4.24             0.000025 ***
## deiexpert_fTrad                        0.293      0.154  784.251    1.90              0.05715 .  
## targgenderWoman                       -0.264      0.613    2.083   -0.43              0.70728    
## deiexpert_fDEI-None:targgenderWoman    1.247      0.137 1486.000    9.13 < 0.0000000000000002 ***
## deiexpert_fTrad:targgenderWoman       -0.524      0.143 1486.000   -3.67              0.00025 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dx_DEI-N dxpr_T trggnW d_DEI-N:
## dxprt_DEI-N -0.191                                
## dexprt_fTrd -0.183  0.549                         
## targgndrWmn -0.694  0.059    0.057                
## dxp_DEI-N:W  0.089 -0.465   -0.255 -0.128         
## dxprt_fTr:W  0.085 -0.255   -0.465 -0.122  0.549
## Call:
## clm2(location = rank_rf ~ deiexpert_f * targgender + (1 | person_num) + 
##     (1 | pid), data = qual_clean_long4)
## 
## Location coefficients:
##                                     Estimate Std. Error z value Pr(>|z|)            
## deiexpert_fDEI-None                  -1.100    0.151     -7.279 0.00000000000034    
## deiexpert_fTrad                       0.260    0.162      1.606 0.10835             
## targgenderWoman                      -0.759    0.154     -4.912 0.00000090118380    
## deiexpert_fDEI-None:targgenderWoman   2.058    0.204     10.085 < 0.0000000000000002
## deiexpert_fTrad:targgenderWoman      -0.513    0.212     -2.422 0.01542             
## 
## No scale coefficients
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 1|2  -1.623    0.126    -12.879
## 2|3  -0.470    0.122     -3.836
## 3|4   0.730    0.122      5.990
## 
## log-likelihood: -2668.41 
## AIC: 5352.82 
## Condition number of Hessian: 168.56 
## (8 observations deleted due to missingness)

Labeling notes:

pers_simplified references a variable coded for EVERY candidate.
targ_gend_f references a variable coded for the candidate’s gender.
deiexpert_f references a variable our between-subjects manipulations.

Snapshot of the dataset is below:

Manipulation Check

Within the “None” condition, was there a difference between people’s selections?

No.

## 
##  Chi-squared test for given probabilities
## 
## data:  table(manip_check_items)
## X-squared = 3.7, df = 3, p-value = 0.3

I reverse-coded the ranking variable. So I coded ‘1’ ranking as ‘4’, ‘2’ ranking as ‘3’, and ‘4’ as ‘1’ So higher #’s means person was more likely to be picked.

Analyses

Voice Quality

Estimated marginal Means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vq ~ deiexpert_f * person + (1 | pid)
##    Data: qual_clean_long4
## 
## REML criterion at convergence: 6794
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.304 -0.551  0.049  0.628  3.160 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.834    0.913   
##  Residual             1.283    1.133   
## Number of obs: 1988, groups:  pid, 497
## 
## Fixed effects:
##                                    Estimate Std. Error       df t value            Pr(>|t|)    
## (Intercept)                           6.094      0.121 1348.115   50.26 <0.0000000000000002 ***
## deiexpert_fDEI-None                  -1.547      0.160 1348.115   -9.67 <0.0000000000000002 ***
## deiexpert_fTrad                       0.262      0.167 1348.115    1.56              0.1183    
## personotherman                       -1.941      0.134 1482.000  -14.54 <0.0000000000000002 ***
## personwoman1                         -1.285      0.134 1482.000   -9.62 <0.0000000000000002 ***
## personwoman2                         -1.319      0.134 1482.000   -9.89 <0.0000000000000002 ***
## deiexpert_fDEI-None:personotherman    1.817      0.176 1482.000   10.31 <0.0000000000000002 ***
## deiexpert_fTrad:personotherman       -0.081      0.184 1482.000   -0.44              0.6601    
## deiexpert_fDEI-None:personwoman1      2.006      0.176 1482.000   11.39 <0.0000000000000002 ***
## deiexpert_fTrad:personwoman1         -0.571      0.184 1482.000   -3.10              0.0020 ** 
## deiexpert_fDEI-None:personwoman2      2.080      0.176 1482.000   11.80 <0.0000000000000002 ***
## deiexpert_fTrad:personwoman2         -0.489      0.184 1482.000   -2.65              0.0081 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dx_DEI-N dxpr_T prsnth prsnw1 prsnw2 dx_DEI-N: dxp_T: d_DEI-N:1 dx_T:1 d_DEI-N:2
## dxprt_DEI-N -0.758                                                                                 
## dexprt_fTrd -0.724  0.549                                                                          
## personthrmn -0.550  0.417    0.399                                                                 
## personwomn1 -0.550  0.417    0.399  0.500                                                          
## personwomn2 -0.550  0.417    0.399  0.500  0.500                                                   
## dxpr_DEI-N:  0.417 -0.550   -0.302 -0.758 -0.379 -0.379                                            
## dxprt_fTrd:  0.399 -0.302   -0.550 -0.724 -0.362 -0.362  0.549                                     
## dxp_DEI-N:1  0.417 -0.550   -0.302 -0.379 -0.758 -0.379  0.500     0.274                           
## dxprt_fTr:1  0.399 -0.302   -0.550 -0.362 -0.724 -0.362  0.274     0.500  0.549                    
## dxp_DEI-N:2  0.417 -0.550   -0.302 -0.379 -0.379 -0.758  0.500     0.274  0.500     0.274          
## dxprt_fTr:2  0.399 -0.302   -0.550 -0.362 -0.362 -0.724  0.274     0.500  0.274     0.500  0.549

Mixed-Model Anova comparing EVERY candidate to each other

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Simple slopes

Graphs

Voice Solicitation

Estimated marginal means

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vs ~ deiexpert_f * person + (1 | pid)
##    Data: qual_clean_long4
## 
## REML criterion at convergence: 7020
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.196 -0.560  0.044  0.609  2.676 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.05     1.02    
##  Residual             1.40     1.18    
## Number of obs: 1988, groups:  pid, 497
## 
## Fixed effects:
##                                     Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                           6.0417     0.1304 1276.8118   46.33 <0.0000000000000002 ***
## deiexpert_fDEI-None                  -1.5674     0.1721 1276.8118   -9.11 <0.0000000000000002 ***
## deiexpert_fTrad                       0.2917     0.1800 1276.8118    1.62              0.1054    
## personotherman                       -1.9514     0.1396 1482.0000  -13.98 <0.0000000000000002 ***
## personwoman1                         -1.2431     0.1396 1482.0000   -8.91 <0.0000000000000002 ***
## personwoman2                         -1.2361     0.1396 1482.0000   -8.86 <0.0000000000000002 ***
## deiexpert_fDEI-None:personotherman    1.8895     0.1842 1482.0000   10.26 <0.0000000000000002 ***
## deiexpert_fTrad:personotherman        0.0017     0.1926 1482.0000    0.01              0.9929    
## deiexpert_fDEI-None:personwoman1      2.1606     0.1842 1482.0000   11.73 <0.0000000000000002 ***
## deiexpert_fTrad:personwoman1         -0.5022     0.1926 1482.0000   -2.61              0.0092 ** 
## deiexpert_fDEI-None:personwoman2      2.2232     0.1842 1482.0000   12.07 <0.0000000000000002 ***
## deiexpert_fTrad:personwoman2         -0.5438     0.1926 1482.0000   -2.82              0.0048 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) dx_DEI-N dxpr_T prsnth prsnw1 prsnw2 dx_DEI-N: dxp_T: d_DEI-N:1 dx_T:1 d_DEI-N:2
## dxprt_DEI-N -0.758                                                                                 
## dexprt_fTrd -0.724  0.549                                                                          
## personthrmn -0.535  0.405    0.388                                                                 
## personwomn1 -0.535  0.405    0.388  0.500                                                          
## personwomn2 -0.535  0.405    0.388  0.500  0.500                                                   
## dxpr_DEI-N:  0.405 -0.535   -0.294 -0.758 -0.379 -0.379                                            
## dxprt_fTrd:  0.388 -0.294   -0.535 -0.724 -0.362 -0.362  0.549                                     
## dxp_DEI-N:1  0.405 -0.535   -0.294 -0.379 -0.758 -0.379  0.500     0.274                           
## dxprt_fTr:1  0.388 -0.294   -0.535 -0.362 -0.724 -0.362  0.274     0.500  0.549                    
## dxp_DEI-N:2  0.405 -0.535   -0.294 -0.379 -0.379 -0.758  0.500     0.274  0.500     0.274          
## dxprt_fTr:2  0.388 -0.294   -0.535 -0.362 -0.362 -0.724  0.274     0.500  0.274     0.500  0.549

Mixed-Model Anova comparing EVERY candidate to each other

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Simple slopes

Graphs

Ranking

Estimated marginal means

Mixed-Model Anova comparing EVERY candidate to each other

Pairwise comparisons (comparing conditions across candidates)

Pairwise comparisons (comparing candidates across conditions)

Graphs

## Call:
## clm2(location = rank_rf ~ deiexpert_f * person_num + (1 | pid), 
##     data = qual_clean_long4)
## 
## Location coefficients:
##                                Estimate Std. Error z value Pr(>|z|)       
## deiexpert_fDEI-None             1.226    0.236      5.204  0.0000001955442
## deiexpert_fTrad                -0.639    0.241     -2.648  0.0081         
## person_num                     -0.050    0.067     -0.749  0.4540         
## deiexpert_fDEI-None:person_num -0.488    0.089     -5.504  0.0000000371085
## deiexpert_fTrad:person_num      0.265    0.092      2.889  0.0039         
## 
## No scale coefficients
## 
## Threshold coefficients:
##     Estimate Std. Error z value
## 1|2 -1.256    0.178     -7.067 
## 2|3 -0.116    0.174     -0.670 
## 3|4  1.021    0.177      5.774 
## 
## log-likelihood: -2717.56 
## AIC: 5451.13 
## Condition number of Hessian: 1059.94 
## (8 observations deleted due to missingness)

Exploratory analyses

Part. gender as a control

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vq ~ deiexpert_f * person + part_gend_f + (1 | pid)
##    Data: qual_clean_long4
## 
## REML criterion at convergence: 6636
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.309 -0.548  0.053  0.624  3.159 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.841    0.917   
##  Residual             1.273    1.128   
## Number of obs: 1944, groups:  pid, 486
## 
## Fixed effects:
##                                     Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                           6.0951     0.1276 1200.8007   47.76 <0.0000000000000002 ***
## deiexpert_fDEI-None                  -1.5421     0.1615 1306.7307   -9.55 <0.0000000000000002 ***
## deiexpert_fTrad                       0.2397     0.1689 1307.6868    1.42              0.1561    
## personotherman                       -1.9366     0.1339 1449.0000  -14.46 <0.0000000000000002 ***
## personwoman1                         -1.2746     0.1339 1449.0000   -9.52 <0.0000000000000002 ***
## personwoman2                         -1.3028     0.1339 1449.0000   -9.73 <0.0000000000000002 ***
## part_gend_fMale Participants          0.0189     0.1001  482.0000    0.19              0.8504    
## deiexpert_fDEI-None:personotherman    1.8096     0.1772 1449.0000   10.21 <0.0000000000000002 ***
## deiexpert_fTrad:personotherman       -0.0795     0.1853 1449.0000   -0.43              0.6680    
## deiexpert_fDEI-None:personwoman1      1.9440     0.1772 1449.0000   10.97 <0.0000000000000002 ***
## deiexpert_fTrad:personwoman1         -0.5576     0.1853 1449.0000   -3.01              0.0027 ** 
## deiexpert_fDEI-None:personwoman2      2.0118     0.1772 1449.0000   11.35 <0.0000000000000002 ***
## deiexpert_fTrad:personwoman2         -0.4746     0.1853 1449.0000   -2.56              0.0105 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vs ~ deiexpert_f * person + part_gend_f + (1 | pid)
##    Data: qual_clean_long4
## 
## REML criterion at convergence: 6826
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.211 -0.558  0.044  0.600  2.688 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.02     1.01    
##  Residual             1.37     1.17    
## Number of obs: 1944, groups:  pid, 486
## 
## Fixed effects:
##                                     Estimate Std. Error        df t value            Pr(>|t|)    
## (Intercept)                           5.9965     0.1361 1145.0911   44.06 <0.0000000000000002 ***
## deiexpert_fDEI-None                  -1.5819     0.1720 1246.4973   -9.20 <0.0000000000000002 ***
## deiexpert_fTrad                       0.2636     0.1798 1247.4205    1.47              0.1430    
## personotherman                       -1.9366     0.1391 1449.0000  -13.92 <0.0000000000000002 ***
## personwoman1                         -1.2324     0.1391 1449.0000   -8.86 <0.0000000000000002 ***
## personwoman2                         -1.2289     0.1391 1449.0000   -8.83 <0.0000000000000002 ***
## part_gend_fMale Participants          0.1981     0.1086  482.0000    1.82              0.0689 .  
## deiexpert_fDEI-None:personotherman    1.8731     0.1841 1449.0000   10.17 <0.0000000000000002 ***
## deiexpert_fTrad:personotherman       -0.0118     0.1926 1449.0000   -0.06              0.9513    
## deiexpert_fDEI-None:personwoman1      2.0842     0.1841 1449.0000   11.32 <0.0000000000000002 ***
## deiexpert_fTrad:personwoman1         -0.4870     0.1926 1449.0000   -2.53              0.0116 *  
## deiexpert_fDEI-None:personwoman2      2.1574     0.1841 1449.0000   11.72 <0.0000000000000002 ***
## deiexpert_fTrad:personwoman2         -0.5614     0.1926 1449.0000   -2.92              0.0036 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: rank ~ deiexpert_f * person + part_gend_f + (1 | pid)
##    Data: qual_clean_long4
## 
## REML criterion at convergence: 5233
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5093 -0.7780 -0.0779  0.9079  3.0808 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.000    0.000   
##  Residual             0.841    0.917   
## Number of obs: 1952, groups:  pid, 488
## 
## Fixed effects:
##                                                   Estimate              Std. Error                      df t value            Pr(>|t|)    
## (Intercept)                           1.272727272727269821    0.078277386224828729 1938.999999974564843797   16.26 <0.0000000000000002 ***
## deiexpert_fDEI-None                   1.481199428843411159    0.101406493873103076 1938.999999953044152790   14.61 <0.0000000000000002 ***
## deiexpert_fTrad                      -0.097402597402594646    0.106478479717951879 1938.999999976005028657   -0.91              0.3604    
## personotherman                        2.027972027972029245    0.108431026165928618 1938.999999973324293023   18.70 <0.0000000000000002 ***
## personwoman1                          1.440559440559442628    0.108431026165928646 1938.999999976123717715   13.29 <0.0000000000000002 ***
## personwoman2                          1.440559440559443738    0.108431026165928673 1938.999999976124627210   13.29 <0.0000000000000002 ***
## part_gend_fMale Participants          0.000000000000000463    0.042550321135031835 1938.999999960017930789    0.00              1.0000    
## deiexpert_fDEI-None:personotherman   -1.771427525354229093    0.143387112015911949 1938.999999972486193656  -12.35 <0.0000000000000002 ***
## deiexpert_fTrad:personotherman       -0.131868131868133315    0.150581435195070223 1938.999999972144905769   -0.88              0.3813    
## deiexpert_fDEI-None:personwoman1     -2.026946875114417068    0.143387112015911977 1938.999999975493437887  -14.14 <0.0000000000000002 ***
## deiexpert_fTrad:personwoman1          0.410089910089908471    0.150581435195070251 1938.999999972146724758    2.72              0.0065 ** 
## deiexpert_fDEI-None:personwoman2     -2.126423314904994477    0.143387112015912005 1938.999999972489376887  -14.83 <0.0000000000000002 ***
## deiexpert_fTrad:personwoman2          0.111388611388608130    0.150581435195070307 1938.999999972148771121    0.74              0.4596    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

Part. gender as a moderator

VQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vq ~ threewaycond * part_gend_f * deiexpert_f + (1 | pid)
##    Data: qual_clean_long4
## 
## REML criterion at convergence: 6641
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.287 -0.552  0.047  0.617  3.105 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.844    0.919   
##  Residual             1.275    1.129   
## Number of obs: 1944, groups:  pid, 486
## 
## Fixed effects:
##                                                                          Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                                                6.1798     0.1543 1300.9993   40.05 < 0.0000000000000002 ***
## threewaycondother\nman                                                    -2.0169     0.1693 1440.0000  -11.92 < 0.0000000000000002 ***
## threewaycondwoman1                                                        -1.4101     0.1693 1440.0000   -8.33 < 0.0000000000000002 ***
## threewaycondwoman2                                                        -1.4382     0.1693 1440.0000   -8.50 < 0.0000000000000002 ***
## part_gend_fMale Participants                                              -0.2081     0.2526 1300.9993   -0.82                0.410    
## deiexpert_fDEI-None                                                       -1.7252     0.2075 1300.9993   -8.31  0.00000000000000023 ***
## deiexpert_fTrad                                                            0.2942     0.2142 1300.9993    1.37                0.170    
## threewaycondother\nman:part_gend_fMale Participants                        0.2150     0.2771 1440.0000    0.78                0.438    
## threewaycondwoman1:part_gend_fMale Participants                            0.3629     0.2771 1440.0000    1.31                0.190    
## threewaycondwoman2:part_gend_fMale Participants                            0.3627     0.2771 1440.0000    1.31                0.191    
## threewaycondother\nman:deiexpert_fDEI-None                                 1.9259     0.2277 1440.0000    8.46 < 0.0000000000000002 ***
## threewaycondwoman1:deiexpert_fDEI-None                                     2.1874     0.2277 1440.0000    9.61 < 0.0000000000000002 ***
## threewaycondwoman2:deiexpert_fDEI-None                                     2.2564     0.2277 1440.0000    9.91 < 0.0000000000000002 ***
## threewaycondother\nman:deiexpert_fTrad                                    -0.1290     0.2350 1440.0000   -0.55                0.583    
## threewaycondwoman1:deiexpert_fTrad                                        -0.5326     0.2350 1440.0000   -2.27                0.024 *  
## threewaycondwoman2:deiexpert_fTrad                                        -0.4837     0.2350 1440.0000   -2.06                0.040 *  
## part_gend_fMale Participants:deiexpert_fDEI-None                           0.4624     0.3315 1300.9993    1.40                0.163    
## part_gend_fMale Participants:deiexpert_fTrad                              -0.1388     0.3489 1300.9993   -0.40                0.691    
## threewaycondother\nman:part_gend_fMale Participants:deiexpert_fDEI-None   -0.3013     0.3636 1440.0000   -0.83                0.408    
## threewaycondwoman1:part_gend_fMale Participants:deiexpert_fDEI-None       -0.6212     0.3636 1440.0000   -1.71                0.088 .  
## threewaycondwoman2:part_gend_fMale Participants:deiexpert_fDEI-None       -0.6240     0.3636 1440.0000   -1.72                0.086 .  
## threewaycondother\nman:part_gend_fMale Participants:deiexpert_fTrad        0.1258     0.3828 1440.0000    0.33                0.743    
## threewaycondwoman1:part_gend_fMale Participants:deiexpert_fTrad           -0.0728     0.3828 1440.0000   -0.19                0.849    
## threewaycondwoman2:part_gend_fMale Participants:deiexpert_fTrad            0.0168     0.3828 1440.0000    0.04                0.965    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

VS

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: vs ~ threewaycond * part_gend_f * deiexpert_f + (1 | pid)
##    Data: qual_clean_long4
## 
## REML criterion at convergence: 6824
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.182 -0.554  0.064  0.620  2.620 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 1.03     1.01    
##  Residual             1.37     1.17    
## Number of obs: 1944, groups:  pid, 486
## 
## Fixed effects:
##                                                                          Estimate Std. Error        df t value             Pr(>|t|)    
## (Intercept)                                                                6.1348     0.1642 1237.3124   37.37 < 0.0000000000000002 ***
## threewaycondother\nman                                                    -2.1461     0.1755 1440.0000  -12.23 < 0.0000000000000002 ***
## threewaycondwoman1                                                        -1.4944     0.1755 1440.0000   -8.52 < 0.0000000000000002 ***
## threewaycondwoman2                                                        -1.4494     0.1755 1440.0000   -8.26  0.00000000000000032 ***
## part_gend_fMale Participants                                              -0.1726     0.2687 1237.3124   -0.64               0.5209    
## deiexpert_fDEI-None                                                       -1.7712     0.2208 1237.3124   -8.02  0.00000000000000240 ***
## deiexpert_fTrad                                                            0.2298     0.2279 1237.3124    1.01               0.3136    
## threewaycondother\nman:part_gend_fMale Participants                        0.5612     0.2872 1440.0000    1.95               0.0509 .  
## threewaycondwoman1:part_gend_fMale Participants                            0.7019     0.2872 1440.0000    2.44               0.0146 *  
## threewaycondwoman2:part_gend_fMale Participants                            0.5909     0.2872 1440.0000    2.06               0.0398 *  
## threewaycondother\nman:deiexpert_fDEI-None                                 2.0733     0.2360 1440.0000    8.79 < 0.0000000000000002 ***
## threewaycondwoman1:deiexpert_fDEI-None                                     2.4807     0.2360 1440.0000   10.51 < 0.0000000000000002 ***
## threewaycondwoman2:deiexpert_fDEI-None                                     2.5222     0.2360 1440.0000   10.69 < 0.0000000000000002 ***
## threewaycondother\nman:deiexpert_fTrad                                     0.0627     0.2436 1440.0000    0.26               0.7968    
## threewaycondwoman1:deiexpert_fTrad                                        -0.3077     0.2436 1440.0000   -1.26               0.2067    
## threewaycondwoman2:deiexpert_fTrad                                        -0.4881     0.2436 1440.0000   -2.00               0.0453 *  
## part_gend_fMale Participants:deiexpert_fDEI-None                           0.4925     0.3527 1237.3124    1.40               0.1628    
## part_gend_fMale Participants:deiexpert_fTrad                               0.0961     0.3713 1237.3124    0.26               0.7958    
## threewaycondother\nman:part_gend_fMale Participants:deiexpert_fDEI-None   -0.5391     0.3769 1440.0000   -1.43               0.1529    
## threewaycondwoman1:part_gend_fMale Participants:deiexpert_fDEI-None       -1.0237     0.3769 1440.0000   -2.72               0.0067 ** 
## threewaycondwoman2:part_gend_fMale Participants:deiexpert_fDEI-None       -0.9358     0.3769 1440.0000   -2.48               0.0131 *  
## threewaycondother\nman:part_gend_fMale Participants:deiexpert_fTrad       -0.2066     0.3968 1440.0000   -0.52               0.6026    
## threewaycondwoman1:part_gend_fMale Participants:deiexpert_fTrad           -0.4846     0.3968 1440.0000   -1.22               0.2222    
## threewaycondwoman2:part_gend_fMale Participants:deiexpert_fTrad           -0.2043     0.3968 1440.0000   -0.51               0.6067    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Ranking

## Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
## Formula: rank_r ~ threewaycond * part_gend_f * deiexpert_f + (1 | pid)
##    Data: qual_clean_long4
## 
## REML criterion at convergence: 5237
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.115 -0.886  0.117  0.776  2.584 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pid      (Intercept) 0.000    0.000   
##  Residual             0.839    0.916   
## Number of obs: 1952, groups:  pid, 488
## 
## Fixed effects:
##                                                                           Estimate Std. Error         df t value            Pr(>|t|)    
## (Intercept)                                                                3.75556    0.09653 1928.00000   38.90 <0.0000000000000002 ***
## threewaycondother\nman                                                    -2.12222    0.13652 1928.00000  -15.55 <0.0000000000000002 ***
## threewaycondwoman1                                                        -1.46667    0.13652 1928.00000  -10.74 <0.0000000000000002 ***
## threewaycondwoman2                                                        -1.43333    0.13652 1928.00000  -10.50 <0.0000000000000002 ***
## part_gend_fMale Participants                                              -0.07631    0.15857 1928.00000   -0.48               0.630    
## deiexpert_fDEI-None                                                       -1.55913    0.12964 1928.00000  -12.03 <0.0000000000000002 ***
## deiexpert_fTrad                                                            0.09708    0.13471 1928.00000    0.72               0.471    
## threewaycondother\nman:part_gend_fMale Participants                        0.25430    0.22425 1928.00000    1.13               0.257    
## threewaycondwoman1:part_gend_fMale Participants                            0.07044    0.22425 1928.00000    0.31               0.753    
## threewaycondwoman2:part_gend_fMale Participants                           -0.01950    0.22425 1928.00000   -0.09               0.931    
## threewaycondother\nman:deiexpert_fDEI-None                                 1.81865    0.18334 1928.00000    9.92 <0.0000000000000002 ***
## threewaycondwoman1:deiexpert_fDEI-None                                     2.08274    0.18334 1928.00000   11.36 <0.0000000000000002 ***
## threewaycondwoman2:deiexpert_fDEI-None                                     2.33512    0.18334 1928.00000   12.74 <0.0000000000000002 ***
## threewaycondother\nman:deiexpert_fTrad                                     0.16433    0.19051 1928.00000    0.86               0.388    
## threewaycondwoman1:deiexpert_fTrad                                        -0.42807    0.19051 1928.00000   -2.25               0.025 *  
## threewaycondwoman2:deiexpert_fTrad                                        -0.12456    0.19051 1928.00000   -0.65               0.513    
## part_gend_fMale Participants:deiexpert_fDEI-None                           0.19634    0.20796 1928.00000    0.94               0.345    
## part_gend_fMale Participants:deiexpert_fTrad                               0.00334    0.21951 1928.00000    0.02               0.988    
## threewaycondother\nman:part_gend_fMale Participants:deiexpert_fDEI-None   -0.14060    0.29410 1928.00000   -0.48               0.633    
## threewaycondwoman1:part_gend_fMale Participants:deiexpert_fDEI-None       -0.14221    0.29410 1928.00000   -0.48               0.629    
## threewaycondwoman2:part_gend_fMale Participants:deiexpert_fDEI-None       -0.50254    0.29410 1928.00000   -1.71               0.088 .  
## threewaycondother\nman:part_gend_fMale Participants:deiexpert_fTrad       -0.09301    0.31044 1928.00000   -0.30               0.765    
## threewaycondwoman1:part_gend_fMale Participants:deiexpert_fTrad            0.04464    0.31044 1928.00000    0.14               0.886    
## threewaycondwoman2:part_gend_fMale Participants:deiexpert_fTrad            0.03502    0.31044 1928.00000    0.11               0.910    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')

Rank woman as #1

Here, I compare whether participants ranked a woman as Number 1

## 
## Call:
## lm(formula = rank_wom ~ deiexpert, data = qual_clean4)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7347 -0.0966 -0.0759  0.2653  0.9241 
## 
## Coefficients:
##               Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)     0.0966     0.0293    3.29              0.0011 ** 
## deiexpertnone   0.6381     0.0387   16.49 <0.0000000000000002 ***
## deiexperttrad  -0.0206     0.0406   -0.51              0.6124    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.353 on 496 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.447,  Adjusted R-squared:  0.445 
## F-statistic:  201 on 2 and 496 DF,  p-value: <0.0000000000000002