1. Import your data

data <- read_csv("../00_data/myData.csv")
## Rows: 20755 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Entity, Code
## dbl (2): Year, LifeExpectancy
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
data2 <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-12-05/life_expectancy_different_ages.csv') 
## Rows: 20755 Columns: 9
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Entity, Code
## dbl (7): Year, LifeExpectancy0, LifeExpectancy10, LifeExpectancy25, LifeExpe...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

2. Make Data Small

Describe the two datasets Data 1: Life Expectancy
Columns: year, life expectancy, entity Rows: 10

Data 2: Life Expectancy at 25 Columns: year, life expectancy (25), entity
Rows: 10

set.seed(123495)
data_small <- data %>% select(LifeExpectancy, Entity) %>% sample_n(10)
data2_small <- data2 %>% select(LifeExpectancy25, Entity ) %>% sample_n(10)

data_small
## # A tibble: 10 × 2
##    LifeExpectancy Entity                   
##             <dbl> <chr>                    
##  1           66.6 Eritrea                  
##  2           25   Guatemala                
##  3           71.1 Belarus                  
##  4           36.2 East Timor               
##  5           58.9 Least developed countries
##  6           67.8 Fiji                     
##  7           61.9 Marshall Islands         
##  8           46.0 South Africa             
##  9           48.2 Greece                   
## 10           56.7 Belgium
data2_small
## # A tibble: 10 × 2
##    LifeExpectancy25 Entity                   
##               <dbl> <chr>                    
##  1             72.9 Hungary                  
##  2             69.1 Saint Lucia              
##  3             74.4 Antigua and Barbuda      
##  4             72.5 Belgium                  
##  5             66.2 Saint Pierre and Miquelon
##  6             62.4 Mozambique               
##  7             74.4 Bahrain                  
##  8             71.4 Armenia                  
##  9             65.3 Cayman Islands           
## 10             77.2 China

3. Inner_join

Describe the resulting data:

Columns: Entity, Life Expectancy, Life Expectancy at 25 Rows: 1

How is it different from the original two datasets? 1 row compared to over 20,000 with only entity and life expectancy, and life expectancy at 25.

data_small %>% inner_join(data2_small, by = c("Entity"))
## # A tibble: 1 × 3
##   LifeExpectancy Entity  LifeExpectancy25
##            <dbl> <chr>              <dbl>
## 1           56.7 Belgium             72.5

4. Left_join

Describe the resulitng data:

Columns: Life expectancy, Entity, Life expectancy at 25 Rows: 10

How is it different from the two original datasets? 10 rows compared to over 20,000. Does not include age or year.

data_small %>% left_join(data2_small, by = c("Entity"))
## # A tibble: 10 × 3
##    LifeExpectancy Entity                    LifeExpectancy25
##             <dbl> <chr>                                <dbl>
##  1           66.6 Eritrea                               NA  
##  2           25   Guatemala                             NA  
##  3           71.1 Belarus                               NA  
##  4           36.2 East Timor                            NA  
##  5           58.9 Least developed countries             NA  
##  6           67.8 Fiji                                  NA  
##  7           61.9 Marshall Islands                      NA  
##  8           46.0 South Africa                          NA  
##  9           48.2 Greece                                NA  
## 10           56.7 Belgium                               72.5

5.Right_Join

Describe the resulting data: Columns:Life expectancy, Entity, Life expectancy at 25 Rows: 10

How is it different from the original data set? only 10 rows, most of the data is not available from the original dataset the expectancy is NA. But the life expectancy at 25 is all listed for varous countries.

data_small %>% right_join(data2_small, by = c ("Entity"))
## # A tibble: 10 × 3
##    LifeExpectancy Entity                    LifeExpectancy25
##             <dbl> <chr>                                <dbl>
##  1           56.7 Belgium                               72.5
##  2           NA   Hungary                               72.9
##  3           NA   Saint Lucia                           69.1
##  4           NA   Antigua and Barbuda                   74.4
##  5           NA   Saint Pierre and Miquelon             66.2
##  6           NA   Mozambique                            62.4
##  7           NA   Bahrain                               74.4
##  8           NA   Armenia                               71.4
##  9           NA   Cayman Islands                        65.3
## 10           NA   China                                 77.2