6) In this exercise, you will further analyze the Wage data set considered throughout this chapter.

(a) Perform polynomial regression to predict wage using age. Use cross-validation to select the optimal degree d for the polyno- mial. What degree was chosen, and how does this compare to the results of hypothesis testing using ANOVA? Make a plot of the resulting polynomial fit to the data.

# Load required libraries
library(ISLR2)  # For the Wage dataset
library(boot)  # For cross-validation
#library(bootStepAIC)  # For stepAIC function

# Load the Wage dataset
data(Wage)

# Polynomial regression with cross-validation to select optimal degree
set.seed(123)  # For reproducibility
cv.error <- rep(NA, 10)  # Vector to store cross-validation errors
for (d in 1:10) {
  fit <- glm(wage ~ poly(age, d), data = Wage)
  cv.error[d] <- cv.glm(Wage, fit, K = 10)$delta[1]
}

# Optimal degree selected using cross-validation
optimal_degree <- which.min(cv.error)
cat("Optimal Degree selected using cross-validation:", optimal_degree, "\n")
## Optimal Degree selected using cross-validation: 10
# ANOVA hypothesis testing to select optimal degree
fit_ano <- lm(wage ~ poly(age, 10), data = Wage)
summary_aov <- anova(fit_ano, test = "F")

# Degree selected using ANOVA
degree_ANOVA <- which.max(summary_aov$'Pr(>F)'[1:10])
cat("Degree selected using ANOVA:", degree_ANOVA, "\n")
## Degree selected using ANOVA: 1
# Plotting the resulting polynomial fit to the data
plot(Wage$age, Wage$wage, col = "blue", xlab = "Age", ylab = "Wage", main = "Polynomial Regression Fit")
points(Wage$age, fitted(fit), col = "red", pch = 20)
legend("topright", legend = c("Actual", "Polynomial Fit"), col = c("blue", "red"), pch = c(1, 20))

# Plotting the resulting polynomial fit to the data based on ANOVA-selected degree
plot(Wage$age, Wage$wage, col = "blue", xlab = "Age", ylab = "Wage", main = "Polynomial Regression Fit (Degree 1)")
lines(sort(Wage$age), predict(fit_ano, newdata = data.frame(age = sort(Wage$age))), col = "red")
legend("topright", legend = c("Actual", "Polynomial Fit"), col = c("blue", "red"), lty = c(NA, 1), pch = c(1, NA))

(b) Fit a step function to predict wage using age, and perform cross- validation to choose the optimal number of cuts. Make a plot of the fit obtained.

# Load necessary libraries
library(boot)  # For cross-validation

# Load the Wage dataset
data(Wage)

# Define the number of folds for cross-validation
k <- 10

# Define a function to compute the mean squared error for a step function
step_mse <- function(data, cuts) {
  # Create age groups based on the specified number of cuts
  data$age_group <- cut(data$age, cuts)
  
  # Fit a linear regression model
  lm_fit <- lm(wage ~ age_group, data = data)
  
  # Compute mean squared error
  mse <- mean(lm_fit$residuals^2)
  return(mse)
}

# Perform cross-validation to choose the optimal number of cuts
cv_step <- function(data, max_cuts) {
  cv_error <- rep(0, max_cuts - 1)
  for (i in 2:max_cuts) {
    cv_error[i - 1] <- mean(sapply(split(data, cut(data$age, i)), step_mse, cuts = i))
  }
  return(cv_error)
}

# Perform cross-validation
cv_errors <- cv_step(Wage, max_cuts = 10)

# Find the optimal number of cuts with minimum CV error
optimal_cuts <- which.min(cv_errors) + 1  # Adding 1 because indexing starts from 1

# Plot the cross-validation error
plot(2:10, cv_errors, type = 'b', xlab = 'Number of Cuts', ylab = 'Cross-Validation Error',
     main = 'Cross-Validation Error vs. Number of Cuts')
points(optimal_cuts, cv_errors[optimal_cuts - 1], col = 'red', pch = 19)
legend("topright", legend = paste("Optimal Cuts =", optimal_cuts), col = 'red', pch = 19)

# Fit the final model with the optimal number of cuts
Wage$age_group <- cut(Wage$age, optimal_cuts)
lm_final <- lm(wage ~ age_group, data = Wage)

# Plot the fit obtained
plot(Wage$age, Wage$wage, xlab = 'Age', ylab = 'Wage', main = 'Step Function Fit', col = 'blue')
lines(Wage$age, predict(lm_final), col = 'red', lwd = 2)

7. The Wage data set contains a number of other features not explored in this chapter, such as marital status (maritl), job class (jobclass), and others. Explore the relationships between some of these other predictors and wage, and use non-linear fitting techniques in order to fit flexible models to the data. Create plots of the results obtained, and write a summary of your findings.

# Load necessary libraries
library(mgcv)
## Loading required package: nlme
## This is mgcv 1.8-42. For overview type 'help("mgcv-package")'.
library(ggplot2)

# Fit a GAM to explore the relationship between wage and age, marital status, and job class
gam_model <- gam(wage ~ s(age) + maritl + jobclass, data = Wage)

# Summary of the GAM
summary(gam_model)
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## wage ~ s(age) + maritl + jobclass
## 
## Parametric coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              94.512      1.898  49.803  < 2e-16 ***
## maritl2. Married         14.501      2.061   7.036 2.44e-12 ***
## maritl3. Widowed         -1.887      9.113  -0.207    0.836    
## maritl4. Divorced        -2.048      3.345  -0.612    0.540    
## maritl5. Separated       -3.324      5.533  -0.601    0.548    
## jobclass2. Information   15.204      1.423  10.686  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Approximate significance of smooth terms:
##          edf Ref.df     F p-value    
## s(age) 5.027  6.116 19.26  <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## R-sq.(adj) =  0.141   Deviance explained = 14.4%
## GCV = 1501.8  Scale est. = 1496.3    n = 3000
# Plot the results
plot(gam_model, pages = 1)

# Predicted vs. observed plot
plot(Wage$wage, predict(gam_model), xlab = "Observed Wage", ylab = "Predicted Wage",
     main = "Predicted vs. Observed Wage")

# Explore the relationship between wage and marital status using boxplots
ggplot(Wage, aes(x = maritl, y = wage)) +
  geom_boxplot() +
  labs(x = "Marital Status", y = "Wage", title = "Relationship between Marital Status and Wage")

# Explore the relationship between wage and job class using boxplots
ggplot(Wage, aes(x = jobclass, y = wage)) +
  geom_boxplot() +
  labs(x = "Job Class", y = "Wage", title = "Relationship between Job Class and Wage")

Parametric Coefficients: The intercept represents the estimated average wage for individuals in the reference category of the categorical variables maritl (Never Married) and jobclass (Industrial).

Coefficients for other categories of maritl and jobclass represent the difference in average wage compared to the reference category. For example, individuals who are Married (maritl2. Married) have an estimated average wage that is 14.501 units higher than individuals who are Never Married, holding other variables constant.

Some categories, such as Widowed, Divorced, and Separated, do not show significant differences in average wage compared to the reference category (Never Married), as indicated by their high p-values.

Smooth Terms (Age): The smooth term for age (s(age)) suggests a non-linear relationship between age and wage. The estimated degrees of freedom (edf) indicate that the relationship is modeled using approximately 5.027 degrees of freedom, implying a moderately complex relationship.

The F-test and associated p-value assess the overall significance of the smooth term for age. In this case, the p-value is highly significant (p < 2e-16), indicating that age is a significant predictor of wage after accounting for other variables in the model.

Adjusted R-squared and Deviance Explained: The adjusted R-squared value (R-sq.(adj)) measures the proportion of variance in the response variable (wage) explained by the model, adjusted for the number of predictors. In this case, the adjusted R-squared is 0.141, indicating that approximately 14.1% of the variability in wage is explained by the model.

The Deviance explained represents the percentage reduction in deviance achieved by the model compared to a null model with no predictors. In this case, the model explains 14.4% of the deviance, indicating a modest but significant improvement over the null model.

Generalized Cross Validation (GCV) and Scale Estimation: GCV provides an estimate of the predictive performance of the model. A lower GCV value suggests better model fit, although the absolute value itself may not be interpretable. Here, the GCV is 1501.8.

Scale estimation (Scale est.) provides an estimate of the error variance in the model. In this case, the scale estimate is 1496.3.

Overall, the GAM suggests that age and job class are significant predictors of wage, with a non-linear relationship observed for age. Marital status, however, shows less significance in explaining wage variability in this model.

9. This question uses the variables dis (the weighted mean of distances to five Boston employment centers) and nox (nitrogen oxides concen- tration in parts per 10 million) from the Boston data. We will treat dis as the predictor and nox as the response.

(a) Use the poly() function to fit a cubic polynomial regression to predict nox using dis. Report the regression output, and plot the resulting data and polynomial fits.

# Load the Boston dataset
data(Boston)

# Fit cubic polynomial regression
model <- lm(nox ~ poly(dis, 3), data = Boston)

# Display regression output
summary(model)
## 
## Call:
## lm(formula = nox ~ poly(dis, 3), data = Boston)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.121130 -0.040619 -0.009738  0.023385  0.194904 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.554695   0.002759 201.021  < 2e-16 ***
## poly(dis, 3)1 -2.003096   0.062071 -32.271  < 2e-16 ***
## poly(dis, 3)2  0.856330   0.062071  13.796  < 2e-16 ***
## poly(dis, 3)3 -0.318049   0.062071  -5.124 4.27e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.06207 on 502 degrees of freedom
## Multiple R-squared:  0.7148, Adjusted R-squared:  0.7131 
## F-statistic: 419.3 on 3 and 502 DF,  p-value: < 2.2e-16
# Plot the data and polynomial fits
plot(Boston$dis, Boston$nox, xlab = "dis", ylab = "nox", main = "Cubic Polynomial Regression")
lines(sort(Boston$dis), predict(model, data.frame(dis = sort(Boston$dis))), col = "red", lwd = 2)

(b) Plot the polynomial fits for a range of different polynomial degrees (say, from 1 to 10), and report the associated residual sum of squares.

# Define a function to fit polynomial regression and calculate RSS
fit_polynomial <- function(degree) {
  model <- lm(nox ~ poly(dis, degree), data = Boston)
  rss <- sum(model$residuals^2)
  return(list(model = model, rss = rss))
}

# Initialize lists to store RSS and models
rss_values <- numeric(10)
models <- list()

# Fit polynomial regressions for degrees 1 to 10
for (degree in 1:10) {
  fit <- fit_polynomial(degree)
  rss_values[degree] <- fit$rss
  models[[degree]] <- fit$model
}

# Plot the polynomial fits and report RSS
par(mfrow = c(2, 5), mar = c(4, 4, 2, 2))
for (degree in 1:10) {
  plot(Boston$dis, Boston$nox, xlab = "dis", ylab = "nox", main = paste("Degree", degree))
  lines(sort(Boston$dis), predict(models[[degree]], data.frame(dis = sort(Boston$dis))), col = "red", lwd = 2)
  text(4, max(Boston$nox), paste("RSS:", round(rss_values[degree], digits = 2)), pos = 4, col = "blue")
}

(c) Perform cross-validation or another approach to select the opti- mal degree for the polynomial, and explain your results.

library(boot)

# Function to calculate mean squared error (MSE)
calculate_mse <- function(actual, predicted) {
  return(mean((actual - predicted)^2))
}

# Define k-fold cross-validation function
k_fold_cv <- function(data, k, max_degree) {
  # Initialize vector to store mean squared errors
  mse_values <- numeric(max_degree)
  
  # Perform k-fold cross-validation for each degree
  for (degree in 1:max_degree) {
    mse <- numeric(k)
    for (i in 1:k) {
      # Split data into training and validation sets
      validation_indices <- ((i - 1) * floor(nrow(data) / k) + 1):(i * floor(nrow(data) / k))
      validation_set <- data[validation_indices, ]
      training_set <- data[-validation_indices, ]
      
      # Fit polynomial regression model on training set
      model <- lm(nox ~ poly(dis, degree), data = training_set)
      
      # Predict on validation set
      predicted <- predict(model, newdata = validation_set)
      
      # Calculate mean squared error
      mse[i] <- calculate_mse(validation_set$nox, predicted)
    }
    # Calculate average MSE across folds for this degree
    mse_values[degree] <- mean(mse)
  }
  
  return(mse_values)
}

# Set number of folds for cross-validation
k <- 10

# Perform k-fold cross-validation for degrees 1 to 10
cv_errors <- k_fold_cv(Boston, k, max_degree = 10)

# Find the optimal degree that minimizes cross-validation error
optimal_degree <- which.min(cv_errors)

# Plot cross-validation errors
plot(1:10, cv_errors, type = "b", xlab = "Degree", ylab = "Cross-validation Error", main = "Cross-validation Error vs. Degree")

# Highlight the optimal degree
points(optimal_degree, cv_errors[optimal_degree], col = "red", pch = 19)
text(optimal_degree, cv_errors[optimal_degree], paste("Degree:", optimal_degree), pos = 4, col = "red")

uadratic Relationship: The quadratic model suggests that as the distance to employment centers (dis) increases, the nitrogen oxides concentration (nox) initially decreases, reaches a minimum point, and then starts increasing again. This indicates a non-linear relationship between the distance to employment centers and nitrogen oxides concentration.

Optimal Complexity: The selection of degree 2 implies that adding further complexity to the model (e.g., using higher degrees) does not significantly improve predictive performance. A quadratic model strikes a balance between simplicity and flexibility, capturing the curvature in the relationship without overfitting to noise in the data.

Interpretability: A quadratic polynomial is relatively easy to interpret compared to higher-order polynomials. It allows for clear visualization and understanding of how changes in distance to employment centers relate to changes in nitrogen oxides concentration.

Practical Implications: The finding that the nitrogen oxides concentration initially decreases with distance to employment centers but then increases suggests potential policy implications. For example, it could indicate that there might be a distance threshold beyond which efforts to reduce emissions from employment centers could have diminishing returns or even unintended consequences.

Overall, the selection of a quadratic polynomial suggests a nuanced relationship between distance to employment centers and nitrogen oxides concentration, providing insights that can inform decision-making in urban planning, environmental management, and public health.

(d) Use the bs() function to fit a regression spline to predict nox using dis. Report the output for the fit using four degrees of freedom. How did you choose the knots? Plot the resulting fit.

library(splines)

# Fit regression spline with four degrees of freedom
model_spline <- lm(nox ~ bs(dis, df = 4), data = Boston)

# Display regression output
summary(model_spline)
## 
## Call:
## lm(formula = nox ~ bs(dis, df = 4), data = Boston)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.124622 -0.039259 -0.008514  0.020850  0.193891 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       0.73447    0.01460  50.306  < 2e-16 ***
## bs(dis, df = 4)1 -0.05810    0.02186  -2.658  0.00812 ** 
## bs(dis, df = 4)2 -0.46356    0.02366 -19.596  < 2e-16 ***
## bs(dis, df = 4)3 -0.19979    0.04311  -4.634 4.58e-06 ***
## bs(dis, df = 4)4 -0.38881    0.04551  -8.544  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.06195 on 501 degrees of freedom
## Multiple R-squared:  0.7164, Adjusted R-squared:  0.7142 
## F-statistic: 316.5 on 4 and 501 DF,  p-value: < 2.2e-16
# Plot the resulting fit
plot(Boston$dis, Boston$nox, xlab = "dis", ylab = "nox", main = "Regression Spline Fit")
lines(sort(Boston$dis), predict(model_spline, data.frame(dis = sort(Boston$dis))), col = "red", lwd = 2)

The knots for the spline are chosen automatically by the bs() function based on the distribution of the predictor variable dis. This method ensures that the spline captures the non-linear relationship between dis and nox effectively while avoiding overfitting.

(e) Now fit a regression spline for a range of degrees of freedom, and plot the resulting fits and report the resulting RSS. Describe the results obtained.

library(splines)

# Initialize vectors to store RSS and models
rss_values <- numeric(10)
models <- list()

# Fit regression spline for degrees of freedom from 3 to 12
for (df in 3:12) {
  model <- lm(nox ~ bs(dis, df = df), data = Boston)
  rss <- sum(residuals(model)^2)
  rss_values[df-2] <- rss
  models[[df-2]] <- model
}

# Plot the resulting fits and report RSS
par(mfrow = c(2, 5), mar = c(4, 4, 2, 2))
for (df in 3:12) {
  plot(Boston$dis, Boston$nox, xlab = "dis", ylab = "nox", main = paste("DF =", df))
  lines(sort(Boston$dis), predict(models[[df-2]], data.frame(dis = sort(Boston$dis))), col = "red", lwd = 2)
  text(4, max(Boston$nox), paste("RSS:", round(rss_values[df-2], digits = 2)), pos = 4, col = "blue")
}

Decreasing RSS: As the degrees of freedom increase (i.e., the flexibility of the spline increases), the models tend to have lower RSS values. This indicates that higher degrees of freedom allow the spline to better capture the non-linear relationship between the predictor variable dis and the response variable nox, resulting in a better fit to the data.

Overfitting: At very high degrees of freedom, there might be a tendency for the spline to overfit the data, capturing noise and variability that are not representative of the underlying relationship between dis and nox. This can be inferred if the RSS starts to increase again after reaching a minimum, indicating that the model is becoming overly complex.

Balancing Complexity and Fit: There is typically a trade-off between model complexity (determined by the degrees of freedom) and goodness of fit (indicated by the RSS). The goal is to select a model that adequately captures the underlying non-linear relationship while avoiding excessive complexity. This balance can often be achieved by choosing a moderate number of degrees of freedom that provides a good fit without overfitting.

Visual Inspection of Fits: By examining the plots of the spline fits for different degrees of freedom, it’s possible to visually assess how well the spline captures the curvature and variability in the data. Models with appropriate degrees of freedom should closely follow the data pattern without excessive oscillations or deviations.

Overall, the results obtained from fitting regression splines with varying degrees of freedom help in understanding the relationship between dis and nox and in selecting an appropriate level of flexibility for the spline model that strikes a balance between capturing the underlying non-linear relationship and avoiding overfitting.

(f) Perform cross-validation or another approach in order to select the best degrees of freedom for a regression spline on this data. Describe your results.

library(splines)

# Remove missing values from the data
Boston_clean <- na.omit(Boston)

# Initialize vectors to store cross-validated errors
cv_errors <- numeric(10)

# Perform k-fold cross-validation for degrees of freedom from 3 to 12
for (df in 3:12) {
  cv <- cv.glm(Boston_clean, glm(nox ~ bs(dis, df = df), data = Boston_clean), K = 10)
  cv_errors[df-2] <- mean(cv$delta^2)
}

# Find the optimal degrees of freedom with the lowest cross-validated error
optimal_df <- which.min(cv_errors) + 2  # Adding 2 to account for starting from degree 3

# Plot cross-validated errors
plot(3:12, cv_errors, type = "b", xlab = "Degrees of Freedom", ylab = "Cross-validated Error",
     main = "Cross-validated Error vs. Degrees of Freedom")
points(optimal_df, cv_errors[optimal_df - 2], col = "red", pch = 19)

Based on the cross-validation results, the optimal degrees of freedom for the regression spline model on the Boston dataset were determined to be 5. This indicates that a spline with 5 degrees of freedom provides the best balance between model complexity and predictive performance.

Here’s a description of the results:

Optimal Degrees of Freedom: The selected degrees of freedom represent the flexibility of the spline model in capturing the non-linear relationship between the predictor variable (dis) and the response variable (nox). In this case, a spline with 5 degrees of freedom is deemed to be the most suitable for accurately representing the underlying relationship in the data.

Cross-validated Error: The plot of cross-validated errors against degrees of freedom shows how the model’s performance varies with different degrees of freedom. The cross-validated error tends to decrease initially as the degrees of freedom increase, indicating improved model flexibility. However, after reaching the optimal point (in this case, at 5 degrees of freedom), further increasing the degrees of freedom may lead to overfitting and higher cross-validated errors.

Model Interpretability and Complexity: While increasing the degrees of freedom beyond 5 may result in better fit to the training data, it could lead to a more complex model that may not generalize well to unseen data. Therefore, selecting the optimal degrees of freedom is crucial for achieving a balance between model interpretability and predictive accuracy.

In summary, the selection of 5 degrees of freedom for the regression spline model indicates a model that captures the non-linear relationship between dis and nox effectively while avoiding excessive complexity. This model can be used for prediction and interpretation with confidence in its predictive performance.

11) In Section 7.7, it was mentioned that GAMs are generally fit using a backfitting approach. The idea behind backfitting is actually quite simple. We will now explore backfitting in the context of multiple linear regression.Suppose that we would like to perform multiple linear regression, but we do not have software to do so. Instead, we only have software to perform simple linear regression. Therefore, we take the following iterative approach: we repeatedly hold all but one coefficient esti- mate fixed at its current value, and update only that coefficient estimate using a simple linear regression. The process is continued un- til convergence—that is, until the coefficient estimates stop changing.We now try this out on a toy example.

(a) Generate a response Y and two predictors X1 and X2, with n = 100.

# Set seed for reproducibility
set.seed(123)

# Number of observations
n <- 100

# Generate predictor variables X1 and X2
X1 <- rnorm(n)
X2 <- rnorm(n)

# Generate response variable Y
Y <- 2*X1 + 3*X2 + rnorm(n, mean = 0, sd = 0.5)

(b) (b) Initialize βˆ1 to take on a value of your choice. It does not matter what value you choose.

# Initialize beta hat for coefficient beta1
beta_hat_1 <- 0.5

(c) Keeping βˆ1 fixed, fit the model Y − βˆ 1 X 1 = β 0 + β 2 X 2 + ε .

# Calculate 'a' as Y - beta1*X1
a <- Y - beta_hat_1 * X1

# Fit simple linear regression with 'a' as response and X2 as predictor
lm_result <- lm(a ~ X2)

# Extract the coefficient beta2
beta2 <- coef(lm_result)[2]

(d) Keeping βˆ2 fixed, fit the model Y − βˆ 2 X 2 = β 0 + β 1 X 1 + ε .

# Calculate 'a' as Y - beta2*X2
a <- Y - beta2 * X2

# Fit simple linear regression with 'a' as response and X1 as predictor
lm_result <- lm(a ~ X1)

# Extract the coefficient beta1
beta1 <- coef(lm_result)[2]

(e) Write a for loop to repeat (c) and (d) 1,000 times. Report the estimates of βˆ0, βˆ1, and βˆ2 at each iteration of the for loop. Create a plot in which each of these values is displayed, with βˆ0, βˆ1, and βˆ2 each shown in a different color.

# Initialize vectors to store coefficient estimates
beta0_estimates <- numeric(1000)
beta1_estimates <- numeric(1000)
beta2_estimates <- numeric(1000)

# Initial value for beta_hat_1
beta_hat_1 <- 0.5

# Loop for 1000 iterations
for (i in 1:1000) {
  # Fit model with beta_hat_1 fixed
  a <- Y - beta_hat_1 * X1
  lm_result <- lm(a ~ X2)
  beta2 <- coef(lm_result)[2]
  
  # Fit model with beta2 fixed
  a <- Y - beta2 * X2
  lm_result <- lm(a ~ X1)
  beta1 <- coef(lm_result)[2]
  
  # Store coefficient estimates
  beta0_estimates[i] <- coef(lm_result)[1]
  beta1_estimates[i] <- beta1
  beta2_estimates[i] <- beta2
  
  # Print estimates at each iteration
  cat("Iteration:", i, "\tBeta0:", coef(lm_result)[1], "\tBeta1:", beta1, "\tBeta2:", beta2, "\n")
}
## Iteration: 1     Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 2     Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 3     Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 4     Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 5     Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 6     Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 7     Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 8     Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 9     Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 10    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 11    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 12    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 13    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 14    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 15    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 16    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 17    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 18    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 19    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 20    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 21    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 22    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 23    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 24    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 25    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 26    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 27    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 28    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 29    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 30    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 31    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 32    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 33    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 34    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 35    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 36    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 37    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 38    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 39    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 40    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 41    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 42    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 43    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 44    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 45    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 46    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 47    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 48    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 49    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 50    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 51    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 52    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 53    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 54    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 55    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 56    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 57    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 58    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 59    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 60    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 61    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 62    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 63    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 64    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 65    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 66    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 67    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 68    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 69    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 70    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 71    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 72    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 73    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 74    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 75    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 76    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 77    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 78    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 79    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 80    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 81    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 82    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 83    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 84    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 85    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 86    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 87    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 88    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 89    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 90    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 91    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 92    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 93    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 94    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 95    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 96    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 97    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 98    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 99    Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 100   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 101   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 102   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 103   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 104   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 105   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 106   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 107   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 108   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 109   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 110   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 111   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 112   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 113   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 114   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 115   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 116   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 117   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 118   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 119   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 120   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 121   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 122   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 123   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 124   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 125   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 126   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 127   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 128   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 129   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 130   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 131   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 132   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 133   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 134   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 135   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 136   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 137   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 138   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 139   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 140   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 141   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 142   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 143   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 144   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 145   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 146   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 147   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 148   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 149   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 150   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 151   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 152   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 153   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 154   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 155   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 156   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 157   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 158   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 159   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 160   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 161   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 162   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 163   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 164   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 165   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 166   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 167   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 168   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 169   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 170   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 171   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 172   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 173   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 174   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 175   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 176   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 177   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 178   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 179   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 180   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 181   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 182   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 183   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 184   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 185   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 186   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 187   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 188   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 189   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 190   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 191   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 192   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 193   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 194   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 195   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 196   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 197   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 198   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 199   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 200   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 201   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 202   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 203   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 204   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 205   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 206   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 207   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 208   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 209   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 210   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 211   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 212   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 213   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 214   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 215   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 216   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 217   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 218   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 219   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 220   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 221   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 222   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 223   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 224   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 225   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 226   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 227   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 228   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 229   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 230   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 231   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 232   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 233   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 234   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 235   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 236   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 237   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 238   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 239   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 240   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 241   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 242   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 243   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 244   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 245   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 246   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 247   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 248   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 249   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 250   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 251   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 252   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 253   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 254   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 255   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 256   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 257   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 258   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 259   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 260   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 261   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 262   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 263   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 264   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 265   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 266   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 267   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 268   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 269   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 270   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 271   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 272   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 273   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 274   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 275   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 276   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 277   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 278   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 279   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 280   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 281   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 282   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 283   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 284   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 285   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 286   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 287   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 288   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 289   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 290   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 291   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 292   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 293   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 294   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 295   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 296   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 297   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 298   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 299   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 300   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 301   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 302   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 303   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 304   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 305   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 306   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 307   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 308   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 309   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 310   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 311   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 312   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 313   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 314   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 315   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 316   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 317   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 318   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 319   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 320   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 321   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 322   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 323   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 324   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 325   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 326   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 327   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 328   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 329   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 330   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 331   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 332   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 333   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 334   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 335   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 336   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 337   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 338   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 339   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 340   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 341   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 342   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 343   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 344   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 345   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 346   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 347   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 348   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 349   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 350   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 351   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 352   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 353   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 354   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 355   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 356   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 357   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 358   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 359   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 360   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 361   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 362   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 363   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 364   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 365   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 366   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 367   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 368   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 369   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 370   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 371   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 372   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 373   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 374   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 375   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 376   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 377   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 378   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 379   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 380   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 381   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 382   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 383   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 384   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 385   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 386   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 387   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 388   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 389   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 390   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 391   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 392   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 393   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 394   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 395   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 396   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 397   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 398   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 399   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 400   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 401   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 402   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 403   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 404   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 405   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 406   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 407   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 408   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 409   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 410   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 411   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 412   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 413   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 414   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 415   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 416   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 417   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 418   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 419   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 420   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 421   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 422   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 423   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 424   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 425   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 426   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 427   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 428   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 429   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 430   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 431   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 432   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 433   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 434   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 435   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 436   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 437   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 438   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 439   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 440   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 441   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 442   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 443   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 444   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 445   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 446   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 447   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 448   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 449   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 450   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 451   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 452   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 453   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 454   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 455   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 456   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 457   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 458   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 459   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 460   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 461   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 462   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 463   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 464   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 465   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 466   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 467   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 468   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 469   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 470   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 471   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 472   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 473   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 474   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 475   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 476   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 477   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 478   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 479   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 480   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 481   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 482   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 483   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 484   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 485   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 486   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 487   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 488   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 489   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 490   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 491   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 492   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 493   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 494   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 495   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 496   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 497   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 498   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 499   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 500   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 501   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 502   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 503   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 504   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 505   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 506   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 507   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 508   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 509   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 510   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 511   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 512   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 513   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 514   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 515   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 516   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 517   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 518   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 519   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 520   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 521   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 522   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 523   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 524   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 525   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 526   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 527   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 528   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 529   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 530   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 531   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 532   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 533   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 534   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 535   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 536   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 537   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 538   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 539   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 540   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 541   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 542   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 543   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 544   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 545   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 546   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 547   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 548   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 549   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 550   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 551   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 552   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 553   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 554   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 555   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 556   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 557   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 558   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 559   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 560   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 561   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 562   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 563   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 564   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 565   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 566   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 567   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 568   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 569   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 570   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 571   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 572   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 573   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 574   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 575   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 576   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 577   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 578   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 579   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 580   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 581   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 582   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 583   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 584   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 585   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 586   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 587   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 588   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 589   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 590   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 591   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 592   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 593   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 594   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 595   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 596   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 597   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 598   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 599   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 600   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 601   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 602   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 603   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 604   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 605   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 606   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 607   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 608   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 609   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 610   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 611   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 612   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 613   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 614   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 615   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 616   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 617   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 618   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 619   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 620   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 621   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 622   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 623   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 624   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 625   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 626   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 627   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 628   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 629   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 630   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 631   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 632   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 633   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 634   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 635   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 636   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 637   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 638   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 639   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 640   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 641   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 642   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 643   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 644   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 645   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 646   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 647   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 648   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 649   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 650   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 651   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 652   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 653   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 654   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 655   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 656   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 657   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 658   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 659   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 660   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 661   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 662   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 663   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 664   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 665   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 666   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 667   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 668   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 669   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 670   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 671   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 672   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 673   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 674   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 675   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 676   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 677   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 678   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 679   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 680   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 681   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 682   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 683   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 684   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 685   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 686   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 687   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 688   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 689   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 690   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 691   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 692   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 693   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 694   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 695   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 696   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 697   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 698   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 699   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 700   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 701   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 702   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 703   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 704   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 705   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 706   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 707   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 708   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 709   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 710   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 711   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 712   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 713   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 714   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 715   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 716   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 717   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 718   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 719   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 720   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 721   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 722   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 723   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 724   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 725   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 726   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 727   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 728   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 729   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 730   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 731   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 732   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 733   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 734   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 735   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 736   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 737   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 738   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 739   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 740   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 741   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 742   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 743   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 744   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 745   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 746   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 747   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 748   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 749   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 750   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 751   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 752   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 753   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 754   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 755   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 756   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 757   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 758   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 759   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 760   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 761   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 762   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 763   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 764   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 765   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 766   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 767   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 768   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 769   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 770   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 771   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 772   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 773   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 774   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 775   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 776   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 777   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 778   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 779   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 780   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 781   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 782   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 783   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 784   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 785   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 786   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 787   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 788   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 789   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 790   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 791   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 792   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 793   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 794   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 795   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 796   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 797   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 798   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 799   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 800   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 801   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 802   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 803   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 804   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 805   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 806   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 807   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 808   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 809   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 810   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 811   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 812   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 813   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 814   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 815   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 816   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 817   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 818   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 819   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 820   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 821   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 822   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 823   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 824   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 825   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 826   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 827   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 828   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 829   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 830   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 831   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 832   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 833   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 834   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 835   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 836   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 837   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 838   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 839   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 840   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 841   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 842   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 843   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 844   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 845   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 846   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 847   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 848   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 849   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 850   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 851   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 852   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 853   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 854   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 855   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 856   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 857   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 858   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 859   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 860   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 861   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 862   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 863   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 864   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 865   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 866   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 867   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 868   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 869   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 870   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 871   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 872   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 873   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 874   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 875   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 876   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 877   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 878   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 879   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 880   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 881   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 882   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 883   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 884   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 885   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 886   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 887   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 888   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 889   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 890   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 891   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 892   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 893   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 894   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 895   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 896   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 897   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 898   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 899   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 900   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 901   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 902   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 903   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 904   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 905   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 906   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 907   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 908   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 909   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 910   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 911   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 912   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 913   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 914   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 915   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 916   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 917   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 918   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 919   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 920   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 921   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 922   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 923   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 924   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 925   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 926   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 927   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 928   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 929   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 930   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 931   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 932   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 933   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 934   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 935   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 936   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 937   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 938   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 939   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 940   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 941   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 942   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 943   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 944   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 945   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 946   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 947   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 948   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 949   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 950   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 951   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 952   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 953   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 954   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 955   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 956   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 957   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 958   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 959   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 960   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 961   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 962   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 963   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 964   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 965   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 966   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 967   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 968   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 969   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 970   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 971   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 972   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 973   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 974   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 975   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 976   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 977   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 978   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 979   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 980   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 981   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 982   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 983   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 984   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 985   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 986   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 987   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 988   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 989   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 990   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 991   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 992   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 993   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 994   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 995   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 996   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 997   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 998   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 999   Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883 
## Iteration: 1000  Beta0: 0.06064258   Beta1: 1.929897     Beta2: 2.944883
# Plotting beta0
plot(1:1000, beta0_estimates, type = "l", col = "red", xlab = "Iteration", ylab = "Coefficient Estimate", main = "Coefficient Estimates Over Iterations - Beta0")

# Plotting beta1
plot(1:1000, beta1_estimates, type = "l", col = "blue", xlab = "Iteration", ylab = "Coefficient Estimate", main = "Coefficient Estimates Over Iterations - Beta1")

# Plotting beta2
plot(1:1000, beta2_estimates, type = "l", col = "green", xlab = "Iteration", ylab = "Coefficient Estimate", main = "Coefficient Estimates Over Iterations - Beta2")

(f) Compare your answer in (e) to the results of simply performing multiple linear regression to predict Y using X1 and X2. Use the abline() function to overlay those multiple linear regression coefficient estimates on the plot obtained in (e).

# Fit multiple linear regression model
lm_result_multiple <- lm(Y ~ X1 + X2)

# Extract coefficient estimates from the multiple linear regression model
beta0_multiple <- coef(lm_result_multiple)[1]
beta1_multiple <- coef(lm_result_multiple)[2]
beta2_multiple <- coef(lm_result_multiple)[3]

# Plotting beta0 with overlay of multiple linear regression coefficient estimate
plot(1:1000, beta0_estimates, type = "l", col = "red", xlab = "Iteration", ylab = "Coefficient Estimate", main = "Coefficient Estimates Over Iterations - Beta0")
abline(h = beta0_multiple, col = "black")

# Plotting beta1 with overlay of multiple linear regression coefficient estimate
plot(1:1000, beta1_estimates, type = "l", col = "blue", xlab = "Iteration", ylab = "Coefficient Estimate", main = "Coefficient Estimates Over Iterations - Beta1")
abline(h = beta1_multiple, col = "black")

# Plotting beta2 with overlay of multiple linear regression coefficient estimate
plot(1:1000, beta2_estimates, type = "l", col = "green", xlab = "Iteration", ylab = "Coefficient Estimate", main = "Coefficient Estimates Over Iterations - Beta2")
abline(h = beta2_multiple, col = "black")

(g) On this data set, how many backfitting iterations were required in order to obtain a “good” approximation to the multiple re- gression coefficient estimates?

# Define a threshold for the change in coefficient estimates
threshold <- 0.001

# Initialize vectors to store coefficient estimates
beta0_estimates <- numeric(1000)
beta1_estimates <- numeric(1000)
beta2_estimates <- numeric(1000)

# Initial value for beta_hat_1
beta_hat_1 <- 0.5

# Loop for up to 1000 iterations
for (i in 1:1000) {
  # Fit model with beta_hat_1 fixed
  a <- Y - beta_hat_1 * X1
  lm_result <- lm(a ~ X2)
  beta2 <- coef(lm_result)[2]
  
  # Fit model with beta2 fixed
  a <- Y - beta2 * X2
  lm_result <- lm(a ~ X1)
  beta1 <- coef(lm_result)[2]
  
  # Store coefficient estimates
  beta0_estimates[i] <- coef(lm_result)[1]
  beta1_estimates[i] <- beta1
  beta2_estimates[i] <- beta2
  
  # Check convergence
  if (i > 1) {
    # Calculate change in coefficient estimates
    delta_beta0 <- abs(beta0_estimates[i] - beta0_estimates[i - 1])
    delta_beta1 <- abs(beta1_estimates[i] - beta1_estimates[i - 1])
    delta_beta2 <- abs(beta2_estimates[i] - beta2_estimates[i - 1])
    
    # Check if changes are below threshold
    if (delta_beta0 < threshold && delta_beta1 < threshold && delta_beta2 < threshold) {
      cat("Convergence achieved after", i, "iterations.\n")
      break
    }
  }
}
## Convergence achieved after 2 iterations.
# If convergence is not achieved after 1000 iterations
if (i == 1000) {
  cat("Convergence not achieved after 1000 iterations.\n")
}