Membangkitkan Data

Skenario

Y : Keputusan menolak/ menerima pelamar kerja pada PTA posisi B X1 : Lama pengalaman kerja sebelumnya (bulan) X2 : Status pekerjaan saat ini (0: Bekerja 1: Tidak Bekerja) X3 : Tingkat pendidikan (0: Lulusan Sekolah Menengah, 1: Lulusan Perguruan Tinggi) X4 : IPK (Skala 4)

##Membangkitkan data X1 X1 : Lama pengalaman kerja sebelumnya (bulan) Membangkitkan Variabel X1 dengan lama pekerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100

set.seed(18000)
n<-(100)
u<- runif(n)

x1 <- round (60*(-(log(1-u)/12)))
x1
##   [1]  7 12  7  2  8  4  1  3  1  2  3  6 11  1  2  1  2  0  2  1  6  4 10 24  3
##  [26] 27 15  6  2  1  3  2  0  3  6  6 12  1  4  5  9  1 24  2  3  4  2  1  3  0
##  [51]  0  0  8  2 20  3 24  5  3  6  0  2  4  9  2  1  2  2  2  3  3  1  1  0  1
##  [76]  8 11  2  0  1  5  4  2  4  0  4 17  1  5  2  1  1  1  5  6  6 15  5  5  2

##Membangkitkan Data X2 X2 : status pekerjaan keterangan yang digunakan (0=Tidak Bekerja) dan (1=Bekerja)

set.seed(47)
X2 <- round(runif(n))
X2
##   [1] 1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 0 0
##  [38] 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1
##  [75] 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 1

Membangkitkan data X3

X3 : Tingkat Pendidikan Keterangan yang digunakan (0: Lulus Sekolah Menengah, 1: Lulusan Perguruan Tinggi)

set.seed(45)
X3 <- round(runif(n))
X3
##   [1] 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 1
##  [38] 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 1
##  [75] 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1

Membangkitkan Data X4

X4 Adalah data IPK pelamar dengan skala 4

set.seed(88)
X4<- round(rnorm(n,3,0.5),2)
X4
##   [1] 2.89 3.32 4.17 2.08 3.23 3.06 3.07 1.98 2.37 3.33 2.60 3.50 3.70 2.89 3.09
##  [16] 2.57 3.17 3.40 2.93 3.46 3.13 2.61 2.63 2.42 3.45 2.57 2.68 2.29 2.83 2.58
##  [31] 2.52 3.26 2.72 3.25 3.23 2.64 2.26 3.33 2.72 2.72 3.97 3.63 2.47 3.68 2.46
##  [46] 3.12 3.70 3.46 3.28 2.59 2.89 3.14 2.00 3.16 2.47 2.78 2.30 3.19 3.75 3.24
##  [61] 3.25 2.73 3.04 2.86 2.81 3.25 2.80 3.50 3.34 3.21 3.53 3.04 3.88 4.26 3.43
##  [76] 3.28 3.24 2.96 2.60 2.47 2.65 3.17 3.09 3.36 3.03 3.04 2.70 2.71 2.21 2.60
##  [91] 2.63 2.77 2.25 2.08 4.28 2.92 3.93 3.21 3.51 3.01

Membangkitkan data Y

Membangkitkan koef

b0<- -11
b1<- 3.5
b2<- 0.5
b3<- 2.7
b4<- 3.2
set.seed(5)
datapendukung <- b0+(b1*x1)+(b2*X2)+(b3*+X3)+(b4*+X4)
datapendukung
##   [1] 25.948 41.624 27.344  3.156 27.836 13.292  2.324  8.536  0.584  7.156
##  [11]  7.820 24.400 39.340  2.248  6.388  1.224  8.844 -0.120  5.376  3.572
##  [21] 20.016 11.852 35.616 83.444 13.740 91.724 52.776 20.028  8.256  1.256
##  [31]  8.064  6.432 -2.296 12.600 20.836 21.148 40.932  3.656 11.704 15.704
##  [41] 33.204  6.816 84.104 10.976  7.372 15.684  8.340  6.772  9.996 -2.212
##  [51] -1.752  2.248 23.400  8.812 69.604  8.896 83.060 16.708 14.700 20.368
##  [61]  2.600  7.436 13.228 29.652  4.992  3.400  8.160  9.900  7.188 12.472
##  [71] 13.996  4.928  7.616  5.832  3.976 30.196 41.068  8.172  0.520  0.404
##  [81] 15.480 13.644  5.888 16.952  1.396 13.228 60.340  1.672 16.272  4.820
##  [91]  3.616  4.064  2.900 15.856 23.696 19.344 57.276 19.472 20.932  8.832
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 1.00000000 1.00000000 1.00000000 0.95914449 1.00000000 0.99999831
##   [7] 0.91084530 0.99980376 0.64198729 0.99922044 0.99959854 1.00000000
##  [13] 1.00000000 0.90447788 0.99832121 0.77276671 0.99985578 0.47003595
##  [19] 0.99539501 0.97266841 1.00000000 0.99999288 1.00000000 1.00000000
##  [25] 0.99999892 1.00000000 1.00000000 1.00000000 0.99974037 0.77833676
##  [31] 0.99968543 0.99839336 0.09145478 0.99999663 1.00000000 1.00000000
##  [37] 1.00000000 0.97481502 0.99999174 0.99999985 1.00000000 0.99890510
##  [43] 1.00000000 0.99998289 0.99937179 0.99999985 0.99976128 0.99885591
##  [49] 0.99995442 0.09867805 0.14779512 0.90447788 1.00000000 0.99985109
##  [55] 1.00000000 0.99986308 1.00000000 0.99999994 0.99999959 1.00000000
##  [61] 0.93086158 0.99941071 0.99999820 1.00000000 0.99325375 0.96770454
##  [67] 0.99971422 0.99994983 0.99924497 0.99999617 0.99999917 0.99281108
##  [73] 0.99950773 0.99707637 0.98158494 1.00000000 1.00000000 0.99971763
##  [79] 0.62714777 0.59964832 0.99999981 0.99999881 0.99723515 0.99999996
##  [85] 0.80154838 0.99999820 1.00000000 0.84184229 0.99999991 0.99199777
##  [91] 0.97381412 0.98311001 0.94784644 0.99999987 1.00000000 1.00000000
##  [97] 1.00000000 1.00000000 1.00000000 0.99985404
set.seed(80)
y <- rbinom(n,1,p)
y
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [75] 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
datagab <- data.frame(y, x1,X2,X3,X4)
datagab
##     y x1 X2 X3   X4
## 1   1  7  1  1 2.89
## 2   1 12  0  0 3.32
## 3   1  7  1  0 4.17
## 4   1  2  1  0 2.08
## 5   1  8  1  0 3.23
## 6   1  4  1  0 3.06
## 7   1  1  0  0 3.07
## 8   1  3  0  1 1.98
## 9   1  1  1  0 2.37
## 10  1  2  1  0 3.33
## 11  1  3  0  0 2.60
## 12  1  6  1  1 3.50
## 13  1 11  0  0 3.70
## 14  1  1  1  0 2.89
## 15  1  2  1  0 3.09
## 16  0  1  1  0 2.57
## 17  1  2  0  1 3.17
## 18  0  0  0  0 3.40
## 19  1  2  0  0 2.93
## 20  1  1  0  0 3.46
## 21  1  6  0  0 3.13
## 22  1  4  1  0 2.61
## 23  1 10  1  1 2.63
## 24  1 24  0  1 2.42
## 25  1  3  1  1 3.45
## 26  1 27  0  0 2.57
## 27  1 15  0  1 2.68
## 28  1  6  0  1 2.29
## 29  1  2  1  1 2.83
## 30  1  1  1  0 2.58
## 31  1  3  1  0 2.52
## 32  1  2  0  0 3.26
## 33  0  0  0  0 2.72
## 34  1  3  0  1 3.25
## 35  1  6  1  0 3.23
## 36  1  6  0  1 2.64
## 37  1 12  0  1 2.26
## 38  1  1  1  0 3.33
## 39  1  4  0  0 2.72
## 40  1  5  1  0 2.72
## 41  1  9  0  0 3.97
## 42  1  1  0  1 3.63
## 43  1 24  1  1 2.47
## 44  1  2  1  1 3.68
## 45  1  3  0  0 2.46
## 46  1  4  0  1 3.12
## 47  1  2  1  0 3.70
## 48  1  1  1  1 3.46
## 49  1  3  0  0 3.28
## 50  0  0  1  0 2.59
## 51  0  0  0  0 2.89
## 52  1  0  1  1 3.14
## 53  1  8  0  0 2.00
## 54  1  2  0  1 3.16
## 55  1 20  0  1 2.47
## 56  1  3  1  0 2.78
## 57  1 24  0  1 2.30
## 58  1  5  0  0 3.19
## 59  1  3  1  1 3.75
## 60  1  6  0  0 3.24
## 61  1  0  1  1 3.25
## 62  1  2  0  1 2.73
## 63  1  4  1  0 3.04
## 64  1  9  0  0 2.86
## 65  1  2  0  0 2.81
## 66  1  1  1  0 3.25
## 67  1  2  1  1 2.80
## 68  1  2  0  1 3.50
## 69  1  2  1  0 3.34
## 70  1  3  0  1 3.21
## 71  1  3  1  1 3.53
## 72  1  1  0  1 3.04
## 73  1  1  0  1 3.88
## 74  1  0  1  1 4.26
## 75  1  1  1  0 3.43
## 76  1  8  0  1 3.28
## 77  1 11  1  1 3.24
## 78  1  2  0  1 2.96
## 79  1  0  1  1 2.60
## 80  0  1  0  0 2.47
## 81  1  5  1  0 2.65
## 82  1  4  1  0 3.17
## 83  1  2  0  0 3.09
## 84  1  4  1  1 3.36
## 85  1  0  0  1 3.03
## 86  1  4  1  0 3.04
## 87  1 17  1  1 2.70
## 88  0  1  1  0 2.71
## 89  1  5  0  1 2.21
## 90  1  2  1  0 2.60
## 91  1  1  0  1 2.63
## 92  1  1  0  1 2.77
## 93  1  1  1  1 2.25
## 94  1  5  0  1 2.08
## 95  1  6  0  0 4.28
## 96  1  6  0  0 2.92
## 97  1 15  1  1 3.93
## 98  1  5  0  1 3.21
## 99  1  5  1  1 3.51
## 100 1  2  1  1 3.01

Analisis Regresi Logistik

modelreglog <- glm(y~x1+X2+X3+X4, family =  binomial(link = "logit"), data=datagab)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ x1 + X2 + X3 + X4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -34.700   4882.919  -0.007    0.994
## x1             21.592   4882.908   0.004    0.996
## X2              1.123      2.043   0.550    0.582
## X3             42.107  17959.153   0.002    0.998
## X4              4.770      3.219   1.482    0.138
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 50.7278  on 99  degrees of freedom
## Residual deviance:  8.8474  on 95  degrees of freedom
## AIC: 18.847
## 
## Number of Fisher Scoring iterations: 24