Membangkitkan Data

Skenario

Y : Keputusan menolak/menerima pelamar kerja pada PT BANG JARWO posisi Manager x1 : Lama pengalaman kerja sebelumnya (bulan) x2 : Status pekerjaan saat ini(0:Lulusan Sekolah Menengah, 1: Lulusan Perguruan Tinggi) x3 :Tingkat pendidikan Keterangan yang digunakan (0=lulus SMA/Tidak kuliah) dan (1=lulus kuliah) x4 :adalah data IPK Pelamar dengan skala 4

Membangkitkan data ke X1

x1 : Lama pengalaman kerja sebelumnya (bulan) Membangkitkan variabel x1 dengan lamapekerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100

set.seed(100)
n <- 100
u <- runif(n)

x1 <- round(60*(-(log(1-u)/12)))
x1
##   [1]  2  1  4  0  3  3  8  2  4  1  5 11  2  3  7  6  1  2  2  6  4  6  4  7  3
##  [26]  1  7 11  4  2  3 13  2 15  6 11  1  5 23  1  2 10  8  9  5  3  8 11  1  2
##  [51]  2  1  1  2  4  1  1  1  5  1  3  5 16  6  3  2  3  3  1  6  3  2  4 17  5
##  [76]  5 10  7  9  0  3  5 13 20  0  4  7  1  2  7 12  1  2  3 12  2  4  1  0  7

Membangkitkan data x2

x2 : Statuspekerjaan keterangan yang digunakan (0= Tidak Bekerja) (1= Bekerja)

set.seed(1234)
x2 <- round(runif(n))
x2
##   [1] 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 0
##  [38] 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1
##  [75] 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1

Membangkitkan data X3

x3 : Tingkat pendidikan Keterangan yang digunakan (0=lulus SMA/Tidak kuliah) dan (1=lulus kuliah)

set.seed(123)
x3 <- round(runif(n))
x3
##   [1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1
##  [38] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0
##  [75] 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1

Membangkitkan data X4

x4 adalah data IPK Pelamar dengan skala 4

set.seed(10000)
x4 <-round(rnorm(n,3,0.5),2)
x4
##   [1] 2.93 2.78 2.88 3.34 3.04 2.42 3.20 2.47 3.24 3.97 3.32 2.68 2.85 2.75 2.93
##  [16] 2.01 3.25 3.09 2.83 2.65 3.16 3.17 2.53 3.40 2.73 3.94 3.07 2.64 3.30 3.01
##  [31] 2.77 2.96 2.94 3.06 2.38 2.99 3.54 3.71 2.91 3.14 3.47 2.12 3.34 3.00 2.78
##  [46] 3.11 3.77 2.75 4.03 2.35 2.87 3.02 3.73 2.57 2.97 3.37 2.75 4.07 3.28 3.09
##  [61] 3.14 3.47 3.12 2.83 3.14 1.74 3.93 3.07 3.34 3.36 3.17 3.27 3.30 2.75 3.47
##  [76] 2.48 2.54 3.27 4.66 2.89 3.58 2.65 3.07 4.36 3.26 3.60 3.60 3.06 1.34 1.95
##  [91] 3.14 3.14 2.25 3.57 2.94 3.41 3.55 2.31 3.64 3.00

Membangkitkan data Y

menentukan koef

b0 <- -11
b1 <- 3.5
b2 <- 0.5
b3 <- 2.7
b4 <- 2.2
set.seed(1)
datapendukung <- b0+(b1*x1)+(b2*x2)+(b3*x3)+(b4*x4)
datapendukung
##   [1]  2.446  1.816  9.836 -0.452  9.388  5.324 26.740  4.134 13.328  1.734
##  [11] 17.004 33.896  4.970  8.750 19.946 17.622 -0.350  2.798  2.226 18.530
##  [21] 12.652 19.674 11.266 23.680  8.206  4.368 23.454 36.508 10.760  2.622
##  [31]  8.294 43.712  5.168 51.432 15.236 34.578  2.988 14.662 76.402 -0.092
##  [41]  4.134 29.164 24.348 27.600 12.616  6.842 25.794 33.550  1.366  4.370
##  [51]  2.314 -0.856  3.906  2.154 12.234  0.414 -1.450  4.654 16.416 -0.202
##  [61]  9.608 14.134 51.864 16.226  9.108  0.328 10.846  9.454  2.548 17.892
##  [71]  9.174  6.394 12.960 55.050 14.134 12.456 29.588 23.394 30.752 -4.142
##  [81]  7.876 15.030 41.254 71.792 -3.828 11.420 24.120  1.932  1.648 18.290
##  [91] 37.908  2.608  0.950 10.054 37.468  4.002 13.510 -2.418 -2.992 23.300
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 0.92026845 0.86008547 0.99994651 0.38888535 0.99991628 0.99515041
##   [7] 1.00000000 0.98423388 0.99999837 0.84992335 0.99999996 1.00000000
##  [13] 0.99310473 0.99984156 1.00000000 0.99999998 0.41338242 0.94256765
##  [19] 0.90256014 0.99999999 0.99999680 1.00000000 0.99998720 1.00000000
##  [25] 0.99972706 0.98748212 1.00000000 1.00000000 0.99997877 0.93226411
##  [31] 0.99975005 1.00000000 0.99433631 1.00000000 0.99999976 1.00000000
##  [37] 0.95202905 0.99999957 1.00000000 0.47701621 0.98423388 1.00000000
##  [43] 1.00000000 1.00000000 0.99999668 0.99893317 1.00000000 1.00000000
##  [49] 0.79673312 0.98750681 0.91002989 0.29817574 0.98027604 0.89604197
##  [55] 0.99999514 0.60204661 0.19000157 0.99056641 0.99999993 0.44967102
##  [61] 0.99993282 0.99999927 1.00000000 0.99999991 0.99988924 0.58127267
##  [67] 0.99998052 0.99992163 0.92743904 0.99999998 0.99989631 0.99833123
##  [73] 0.99999765 1.00000000 0.99999927 0.99999611 1.00000000 1.00000000
##  [79] 1.00000000 0.01564246 0.99962040 0.99999970 1.00000000 1.00000000
##  [85] 0.02128996 0.99998903 1.00000000 0.87347062 0.83862056 0.99999999
##  [91] 1.00000000 0.93137467 0.72111518 0.99995699 1.00000000 0.98204908
##  [97] 0.99999864 0.08181036 0.04778860 1.00000000
set.seed(2030)
y <- rbinom(n,1,p)
y
##   [1] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [75] 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
datagap <- data.frame(y,x1,x2,x3,x4)
datagap
##     y x1 x2 x3   x4
## 1   1  2  0  0 2.93
## 2   1  1  1  1 2.78
## 3   1  4  1  0 2.88
## 4   0  0  1  1 3.34
## 5   1  3  1  1 3.04
## 6   1  3  1  0 2.42
## 7   1  8  0  1 3.20
## 8   1  2  0  1 2.47
## 9   1  4  1  1 3.24
## 10  1  1  1  0 3.97
## 11  1  5  1  1 3.32
## 12  1 11  1  0 2.68
## 13  1  2  0  1 2.85
## 14  1  3  1  1 2.75
## 15  1  7  0  0 2.93
## 16  1  6  1  1 2.01
## 17  0  1  0  0 3.25
## 18  1  2  0  0 3.09
## 19  1  2  0  0 2.83
## 20  1  6  0  1 2.65
## 21  1  4  0  1 3.16
## 22  1  6  0  1 3.17
## 23  1  4  0  1 2.53
## 24  1  7  0  1 3.40
## 25  1  3  0  1 2.73
## 26  1  1  1  1 3.94
## 27  1  7  1  1 3.07
## 28  1 11  1  1 2.64
## 29  1  4  1  0 3.30
## 30  1  2  0  0 3.01
## 31  1  3  0  1 2.77
## 32  1 13  0  1 2.96
## 33  1  2  0  1 2.94
## 34  1 15  1  1 3.06
## 35  1  6  0  0 2.38
## 36  1 11  1  0 2.99
## 37  1  1  0  1 3.54
## 38  1  5  0  0 3.71
## 39  1 23  1  0 2.91
## 40  0  1  1  0 3.14
## 41  1  2  1  0 3.47
## 42  1 10  1  0 2.12
## 43  1  8  0  0 3.34
## 44  1  9  1  0 3.00
## 45  1  5  0  0 2.78
## 46  1  3  1  0 3.11
## 47  1  8  1  0 3.77
## 48  1 11  0  0 2.75
## 49  1  1  0  0 4.03
## 50  1  2  1  1 2.35
## 51  1  2  0  0 2.87
## 52  0  1  0  0 3.02
## 53  1  1  1  1 3.73
## 54  1  2  1  0 2.57
## 55  1  4  0  1 2.97
## 56  0  1  1  0 3.37
## 57  0  1  0  0 2.75
## 58  1  1  1  1 4.07
## 59  1  5  0  1 3.28
## 60  0  1  1  0 3.09
## 61  1  3  1  1 3.14
## 62  1  5  0  0 3.47
## 63  1 16  0  0 3.12
## 64  1  6  0  0 2.83
## 65  1  3  0  1 3.14
## 66  1  2  1  0 1.74
## 67  1  3  0  1 3.93
## 68  1  3  1  1 3.07
## 69  1  1  0  1 3.34
## 70  1  6  1  0 3.36
## 71  1  3  0  1 3.17
## 72  1  2  1  1 3.27
## 73  1  4  0  1 3.30
## 74  1 17  1  0 2.75
## 75  1  5  0  0 3.47
## 76  1  5  1  0 2.48
## 77  1 10  0  0 2.54
## 78  1  7  0  1 3.27
## 79  1  9  0  0 4.66
## 80  0  0  1  0 2.89
## 81  1  3  1  0 3.58
## 82  1  5  0  1 2.65
## 83  1 13  0  0 3.07
## 84  1 20  1  1 4.36
## 85  0  0  0  0 3.26
## 86  1  4  1  0 3.60
## 87  1  7  0  1 3.60
## 88  1  1  0  1 3.06
## 89  1  2  0  1 1.34
## 90  1  7  1  0 1.95
## 91  1 12  0  0 3.14
## 92  1  1  1  1 3.14
## 93  1  2  0  0 2.25
## 94  1  3  0  1 3.57
## 95  1 12  0  0 2.94
## 96  1  2  1  0 3.41
## 97  1  4  0  1 3.55
## 98  0  1  0  0 2.31
## 99  0  0  0  0 3.64
## 100 1  7  1  1 3.00

Analisis Regresi Logistik

modelreglog <- glm(y~x1+x2+x3+x4, family = binomial(link = "logit"), data=datagap) 
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(link = "logit"), 
##     data = datagap)
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -342.2720 52625.7406  -0.007    0.995
## x1            129.8434 17101.1984   0.008    0.994
## x2              0.5095 17347.3415   0.000    1.000
## x3             71.7759 19026.6747   0.004    0.997
## x4             57.8011  8408.3828   0.007    0.995
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 6.9303e+01  on 99  degrees of freedom
## Residual deviance: 1.4388e-07  on 95  degrees of freedom
## AIC: 10
## 
## Number of Fisher Scoring iterations: 25