Membangkitkan Data

Skenario

Y : Keputusan menolak/menerima pelamar kerja pada PT A posisi B X1 : Lama pengalaman kerja sebelumnya (bulan) X2 : Status pekerjaan saat ini (0: Bekerja, 1: Tidak bekerja) X3 : Tingkat pendidikan (0: Lulusan sekolah menengah, 1: Lulusan Perguruan Tinggi) X4 : IPK (skala 4)

Membangkitkan Data X1

X1 : Lama pengalaman kerja sebelumnya (bulan) membangkitkan variabel X1 dengan lama pekerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100

set.seed(100)
n <- 100
u <- runif(n)

X1 <- round (60*(-(log(1-u)/12)))
X1
##   [1]  2  1  4  0  3  3  8  2  4  1  5 11  2  3  7  6  1  2  2  6  4  6  4  7  3
##  [26]  1  7 11  4  2  3 13  2 15  6 11  1  5 23  1  2 10  8  9  5  3  8 11  1  2
##  [51]  2  1  1  2  4  1  1  1  5  1  3  5 16  6  3  2  3  3  1  6  3  2  4 17  5
##  [76]  5 10  7  9  0  3  5 13 20  0  4  7  1  2  7 12  1  2  3 12  2  4  1  0  7

Membangkitkan Data X2

X2 : Status pekerjaan Keterangan yang digunakan (0=Tidak bekerja) dan (1=Bekerja)

set.seed(123)
X2 <- round(runif(n))
X2
##   [1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1
##  [38] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0
##  [75] 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1

Membangkitkan Data X3

X3 : Tingkat pendidikan Keterangan yang digunakan (0=lulus SMA/Tidak kuliah) dan (1=lulus kulaih)

set.seed(12)
X3 <- round(runif(n))
X3
##   [1] 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1
##  [38] 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0
##  [75] 0 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0

Membangkitkan Data X4

X4 : data IPK pelamar dengan skala 4

set.seed(1)
X4 <- round(rnorm(n,3,0.5),2)
X4
##   [1] 2.69 3.09 2.58 3.80 3.16 2.59 3.24 3.37 3.29 2.85 3.76 3.19 2.69 1.89 3.56
##  [16] 2.98 2.99 3.47 3.41 3.30 3.46 3.39 3.04 2.01 3.31 2.97 2.92 2.26 2.76 3.21
##  [31] 3.68 2.95 3.19 2.97 2.31 2.79 2.80 2.97 3.55 3.38 2.92 2.87 3.35 3.28 2.66
##  [46] 2.65 3.18 3.38 2.94 3.44 3.20 2.69 3.17 2.44 3.72 3.99 2.82 2.48 3.28 2.93
##  [61] 4.20 2.98 3.34 3.01 2.63 3.09 2.10 3.73 3.08 4.09 3.24 2.65 3.31 2.53 2.37
##  [76] 3.15 2.78 3.00 3.04 2.71 2.72 2.93 3.59 2.24 3.30 3.17 3.53 2.85 3.19 3.13
##  [91] 2.73 3.60 3.58 3.35 3.79 3.28 2.36 2.71 2.39 2.76

Membangkitkan Data Y

menentukan koef

b0 <- -11
b1 <- 3.5
b2 <- 0.5
b3 <- 2.7
b4 <- 3.2
set.seed(1)
datapendukung <- b0+(b1*X1)+(b2*X2)+(b3*X3)+(b4*X4)
datapendukung
##   [1]  4.608  5.588 13.956  1.660 10.112  7.788 27.868  9.984 14.028  1.620
##  [11] 19.032 40.408  5.108  6.048 24.892 20.036  2.068  9.804  9.612 21.060
##  [21] 14.572 24.048 13.228 23.132 10.592  2.504 26.044 35.232 11.832  8.972
##  [31] 11.776 47.140  9.408 54.204 20.092 39.128  4.660 18.704 80.860  3.316
##  [41]  8.044 35.884 30.420 30.996 17.712  7.980 27.176 38.316  1.908 10.208
##  [51]  6.240  1.108  3.144  3.808 18.104  7.968  4.224  3.636 20.196  4.576
##  [61] 16.140 16.036 58.388 22.332  8.416  5.888  6.720 14.636  2.856 25.788
##  [71] 10.368  7.680 16.792 56.596 14.084 19.280 35.596 26.300 30.228  0.372
##  [81] 10.904 19.076 45.988 66.668  2.260 13.144 25.296  4.820  6.708 23.516
##  [91] 42.436  4.520  7.456 10.720 45.828  6.496 13.752  1.172 -3.352 22.832
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 0.99012671 0.99627145 0.99999913 0.84023800 0.99995941 0.99958549
##   [7] 1.00000000 0.99995387 0.99999919 0.83479513 0.99999999 1.00000000
##  [13] 0.99398819 0.99764299 1.00000000 1.00000000 0.88775382 0.99994477
##  [19] 0.99993308 1.00000000 0.99999953 1.00000000 0.99999820 1.00000000
##  [25] 0.99997488 0.92442176 1.00000000 1.00000000 0.99999273 0.99987310
##  [31] 0.99999231 1.00000000 0.99991794 1.00000000 1.00000000 1.00000000
##  [37] 0.99062231 0.99999999 1.00000000 0.96497364 0.99967908 1.00000000
##  [43] 1.00000000 1.00000000 0.99999998 0.99965788 1.00000000 1.00000000
##  [49] 0.87079429 0.99996313 0.99805394 0.75175606 0.95867165 0.97828930
##  [55] 0.99999999 0.99965375 0.98557127 0.97431932 1.00000000 0.98980893
##  [61] 0.99999990 0.99999989 1.00000000 1.00000000 0.99977875 0.99723515
##  [67] 0.99879492 0.99999956 0.94562800 1.00000000 0.99996858 0.99953824
##  [73] 0.99999995 1.00000000 0.99999924 1.00000000 1.00000000 1.00000000
##  [79] 1.00000000 0.59194216 0.99998162 0.99999999 1.00000000 1.00000000
##  [85] 0.90550963 0.99999804 1.00000000 0.99199777 0.99878039 1.00000000
##  [91] 1.00000000 0.98922827 0.99942237 0.99997790 1.00000000 0.99849281
##  [97] 0.99999893 0.76350633 0.03382973 1.00000000
set.seed(1)
y <- rbinom(n,1,p)
y
##   [1] 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [75] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
datagab <- data.frame(y,X1,X2,X3,X4)
datagab
##     y X1 X2 X3   X4
## 1   1  2  0  0 2.69
## 2   1  1  1  1 3.09
## 3   1  4  0  1 2.58
## 4   0  0  1  0 3.80
## 5   1  3  1  0 3.16
## 6   1  3  0  0 2.59
## 7   1  8  1  0 3.24
## 8   1  2  1  1 3.37
## 9   1  4  1  0 3.29
## 10  1  1  0  0 2.85
## 11  1  5  1  0 3.76
## 12  1 11  0  1 3.19
## 13  1  2  1  0 2.69
## 14  1  3  1  0 1.89
## 15  1  7  0  0 3.56
## 16  1  6  1  0 2.98
## 17  1  1  0  0 2.99
## 18  1  2  0  1 3.47
## 19  1  2  0  1 3.41
## 20  1  6  1  0 3.30
## 21  1  4  1  0 3.46
## 22  1  6  1  1 3.39
## 23  1  4  1  0 3.04
## 24  1  7  1  1 2.01
## 25  1  3  1  0 3.31
## 26  1  1  1  0 2.97
## 27  1  7  1  1 2.92
## 28  1 11  1  0 2.26
## 29  1  4  0  0 2.76
## 30  1  2  0  1 3.21
## 31  1  3  1  0 3.68
## 32  1 13  1  1 2.95
## 33  1  2  1  1 3.19
## 34  1 15  1  1 2.97
## 35  1  6  0  1 2.31
## 36  1 11  0  1 2.79
## 37  1  1  1  1 2.80
## 38  1  5  0  1 2.97
## 39  1 23  0  0 3.55
## 40  1  1  0  0 3.38
## 41  1  2  0  1 2.92
## 42  1 10  0  1 2.87
## 43  1  8  0  1 3.35
## 44  1  9  0  0 3.28
## 45  1  5  0  1 2.66
## 46  1  3  0  0 2.65
## 47  1  8  0  0 3.18
## 48  1 11  0  0 3.38
## 49  1  1  0  0 2.94
## 50  1  2  1  1 3.44
## 51  1  2  0  0 3.20
## 52  0  1  0  0 2.69
## 53  1  1  1  0 3.17
## 54  1  2  0  0 2.44
## 55  1  4  1  1 3.72
## 56  1  1  0  1 3.99
## 57  1  1  0  1 2.82
## 58  1  1  1  1 2.48
## 59  1  5  1  1 3.28
## 60  1  1  0  1 2.93
## 61  1  3  1  1 4.20
## 62  1  5  0  0 2.98
## 63  1 16  0  1 3.34
## 64  1  6  0  1 3.01
## 65  1  3  1  0 2.63
## 66  1  2  0  0 3.09
## 67  1  3  1  0 2.10
## 68  1  3  1  1 3.73
## 69  1  1  1  0 3.08
## 70  1  6  0  1 4.09
## 71  1  3  1  0 3.24
## 72  1  2  1  1 2.65
## 73  1  4  1  1 3.31
## 74  1 17  0  0 2.53
## 75  1  5  0  0 2.37
## 76  1  5  0  1 3.15
## 77  1 10  0  1 2.78
## 78  1  7  1  1 3.00
## 79  1  9  0  0 3.04
## 80  0  0  0  1 2.71
## 81  1  3  0  1 2.72
## 82  1  5  1  1 2.93
## 83  1 13  0  0 3.59
## 84  1 20  1  0 2.24
## 85  1  0  0  1 3.30
## 86  1  4  0  0 3.17
## 87  1  7  1  0 3.53
## 88  1  1  1  1 2.85
## 89  1  2  1  0 3.19
## 90  1  7  0  0 3.13
## 91  1 12  0  1 2.73
## 92  1  1  1  0 3.60
## 93  1  2  0  0 3.58
## 94  1  3  1  0 3.35
## 95  1 12  0  1 3.79
## 96  1  2  0  0 3.28
## 97  1  4  1  1 2.36
## 98  1  1  0  0 2.71
## 99  0  0  0  0 2.39
## 100 1  7  1  0 2.76

Analisis Regresi Logistik

modelreglog <- glm(y~X1+X2+X3+X4, family = binomial(link = "logit"), data=datagab)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ X1 + X2 + X3 + X4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Deviance Residuals: 
##        Min          1Q      Median          3Q         Max  
## -1.844e-03   2.000e-08   2.000e-08   2.000e-08   1.919e-03  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -4717.8   119964.4  -0.039    0.969
## X1            1141.7    46339.9   0.025    0.980
## X2            -337.0    20317.1  -0.017    0.987
## X3             643.2    24248.5   0.027    0.979
## X4            1324.5    32254.0   0.041    0.967
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3.3589e+01  on 99  degrees of freedom
## Residual deviance: 7.7936e-06  on 95  degrees of freedom
## AIC: 10
## 
## Number of Fisher Scoring iterations: 25