Membngkitkan Data

Skenario

Y : Keputuan menolak/menerima pelamar kerja pada PT A posisi B X1 : Lama pengalaman kerja sebelumnya (bulan) X2 : Status pekerjaan saat ini (0:Bekerja, 1:Tidak bekerja) X3 : Tingkat pendidikan (0:Lulusan Sekolah Menengah, 1:Lulusan Perguruan Tiggi) X4 : IPK (skala 4)

Membangkitkan Data

X1 : Lama pengalaman Kerja sebelumnya (bulan) Membangkitkan vriabel X1 dengan lama pekerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100

set.seed(100)
n <- 100
u <- runif(n)

X1 <- round(60*(-(log(1-u)/12)))
X1
##   [1]  2  1  4  0  3  3  8  2  4  1  5 11  2  3  7  6  1  2  2  6  4  6  4  7  3
##  [26]  1  7 11  4  2  3 13  2 15  6 11  1  5 23  1  2 10  8  9  5  3  8 11  1  2
##  [51]  2  1  1  2  4  1  1  1  5  1  3  5 16  6  3  2  3  3  1  6  3  2  4 17  5
##  [76]  5 10  7  9  0  3  5 13 20  0  4  7  1  2  7 12  1  2  3 12  2  4  1  0  7

##Membangkitkan data X2 X2 : Status pekerjaan Keterangan yang digunakan (0=Tidak Bekerja) dan (1=Bekerja)

set.seed(12345)
X2 <- round(runif(n))
X2
##   [1] 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1
##  [38] 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0
##  [75] 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0

Membangkitkan data x3

X3 : Tingkat pendidikan Keterangan yang digunakan (0=Lulus SMA/Tidak Kuiah) dan (1=Lulus Kuliah)

set.seed(123)
X3 <- round(runif(n))
X3
##   [1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1
##  [38] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0
##  [75] 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1

Membangkitkan data x4

X4 : Data IPK Peamar dengan skala 4

set.seed(3456)
X4 <- round(rnorm(n,3,0.5),2)
X4
##   [1] 3.38 3.55 3.01 3.55 2.37 2.97 2.47 3.83 3.28 2.38 2.88 2.18 2.98 3.11 3.10
##  [16] 3.62 2.28 2.01 3.23 3.14 2.47 3.04 2.68 3.32 2.57 3.27 3.26 3.47 2.57 3.43
##  [31] 3.38 4.26 3.15 3.61 3.01 3.00 3.86 2.28 2.58 3.10 2.67 2.26 3.49 2.67 2.93
##  [46] 3.51 3.14 3.00 2.46 3.82 2.34 2.37 3.21 3.43 3.30 2.48 2.70 2.87 2.98 2.92
##  [61] 2.66 2.88 2.83 2.59 2.41 3.28 2.60 3.31 2.79 2.99 2.54 2.37 4.00 2.12 2.93
##  [76] 3.45 2.93 2.69 2.24 2.95 3.03 3.73 2.75 2.87 3.35 2.88 2.99 3.03 3.14 3.00
##  [91] 2.98 2.93 3.67 4.48 2.88 2.89 3.08 3.26 2.52 2.57

Membangkitkan data Y

Menentukan koefisien

b0 <- -11
b1 <- 3.5
b2 <- 0.5
b3 <- 2.7
b4 <- 3.2
set.seed(123456)
datapendukung <- b0 + (b1*X1) + (b2*X2) + (b3*X3) + (b4*X4)
datapendukung
##   [1]  7.316  7.060 13.132  3.560  9.784  9.004 27.604 11.456 16.696  0.616
##  [11] 18.416 34.476  8.736 12.152 23.420 24.284 -0.204  2.432  6.336 23.248
##  [21] 13.604 22.428 14.776 27.324 10.924  5.664 27.132 41.804 11.224  6.976
##  [31] 13.516 50.832  8.780 56.252 19.632 37.100  8.052 14.296 78.256  2.420
##  [41]  5.044 31.232 28.668 29.544 15.876 10.732 27.048 37.100  0.372 11.424
##  [51]  3.988  0.584  5.472  6.976 16.760  0.436  1.640  4.384 18.736  1.844
##  [61] 11.212 15.716 54.556 18.788 10.412  6.496 11.020 12.792  4.628 20.068
##  [71] 10.828  6.784 18.500 55.284 15.876 18.040 33.876 25.308 28.168 -1.560
##  [81]  9.696 21.636 43.300 70.884 -0.280 12.216 26.268  5.396  9.248 23.100
##  [91] 41.036  5.076  7.744 17.036 40.716  5.748 16.056  3.432 -2.936 24.424
P <- exp(datapendukung)/(1+exp(datapendukung))
P
##   [1] 0.99933563 0.99914196 0.99999802 0.97234758 0.99994366 0.99987710
##   [7] 1.00000000 0.99998941 0.99999994 0.64930827 0.99999999 1.00000000
##  [13] 0.99983933 0.99999472 1.00000000 1.00000000 0.44917614 0.91923514
##  [19] 0.99823176 1.00000000 0.99999876 1.00000000 0.99999962 1.00000000
##  [25] 0.99998198 0.99654338 1.00000000 1.00000000 0.99998665 0.99906684
##  [31] 0.99999865 1.00000000 0.99984625 1.00000000 1.00000000 1.00000000
##  [37] 0.99968164 0.99999938 1.00000000 0.91833974 0.99359340 1.00000000
##  [43] 1.00000000 1.00000000 0.99999987 0.99997817 1.00000000 1.00000000
##  [49] 0.59194216 0.99998907 0.98180061 0.64198729 0.99581477 0.99906684
##  [55] 0.99999995 0.60730550 0.83753494 0.98767836 0.99999999 0.86342109
##  [61] 0.99998649 0.99999985 1.00000000 0.99999999 0.99996993 0.99849281
##  [67] 0.99998363 0.99999722 0.99032032 1.00000000 0.99998016 0.99886954
##  [73] 0.99999999 1.00000000 0.99999987 0.99999999 1.00000000 1.00000000
##  [79] 1.00000000 0.17364665 0.99993847 1.00000000 1.00000000 1.00000000
##  [85] 0.43045378 0.99999505 1.00000000 0.99548579 0.99990371 1.00000000
##  [91] 1.00000000 0.99379392 0.99956685 0.99999996 1.00000000 0.99682099
##  [97] 0.99999989 0.96868978 0.05040238 1.00000000
set.seed(3)
y <- rbinom(n,1,P)
y
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [75] 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
datagab <- data.frame(y, X1, X2, X3, X4)
datagab
##     y X1 X2 X3   X4
## 1   1  2  1  0 3.38
## 2   1  1  1  1 3.55
## 3   1  4  1  0 3.01
## 4   1  0  1  1 3.55
## 5   1  3  0  1 2.37
## 6   1  3  0  0 2.97
## 7   1  8  0  1 2.47
## 8   1  2  1  1 3.83
## 9   1  4  1  1 3.28
## 10  1  1  1  0 2.38
## 11  1  5  0  1 2.88
## 12  1 11  0  0 2.18
## 13  1  2  1  1 2.98
## 14  1  3  0  1 3.11
## 15  1  7  0  0 3.10
## 16  1  6  0  1 3.62
## 17  0  1  0  0 2.28
## 18  1  2  0  0 2.01
## 19  1  2  0  0 3.23
## 20  1  6  1  1 3.14
## 21  1  4  0  1 2.47
## 22  1  6  0  1 3.04
## 23  1  4  1  1 2.68
## 24  1  7  1  1 3.32
## 25  1  3  1  1 2.57
## 26  1  1  0  1 3.27
## 27  1  7  1  1 3.26
## 28  1 11  1  1 3.47
## 29  1  4  0  0 2.57
## 30  1  2  0  0 3.43
## 31  1  3  1  1 3.38
## 32  1 13  0  1 4.26
## 33  1  2  0  1 3.15
## 34  1 15  1  1 3.61
## 35  1  6  0  0 3.01
## 36  1 11  0  0 3.00
## 37  1  1  1  1 3.86
## 38  1  5  1  0 2.28
## 39  1 23  1  0 2.58
## 40  1  1  0  0 3.10
## 41  1  2  1  0 2.67
## 42  1 10  0  0 2.26
## 43  1  8  1  0 3.49
## 44  1  9  1  0 2.67
## 45  1  5  0  0 2.93
## 46  1  3  0  0 3.51
## 47  1  8  0  0 3.14
## 48  1 11  0  0 3.00
## 49  1  1  0  0 2.46
## 50  1  2  1  1 3.82
## 51  1  2  1  0 2.34
## 52  1  1  1  0 2.37
## 53  1  1  0  1 3.21
## 54  1  2  0  0 3.43
## 55  1  4  1  1 3.30
## 56  0  1  0  0 2.48
## 57  1  1  1  0 2.70
## 58  1  1  0  1 2.87
## 59  1  5  0  1 2.98
## 60  0  1  0  0 2.92
## 61  1  3  1  1 2.66
## 62  1  5  0  0 2.88
## 63  1 16  1  0 2.83
## 64  1  6  1  0 2.59
## 65  1  3  1  1 2.41
## 66  1  2  0  0 3.28
## 67  1  3  1  1 2.60
## 68  1  3  0  1 3.31
## 69  1  1  1  1 2.79
## 70  1  6  1  0 2.99
## 71  1  3  1  1 2.54
## 72  1  2  1  1 2.37
## 73  1  4  0  1 4.00
## 74  1 17  0  0 2.12
## 75  1  5  0  0 2.93
## 76  1  5  1  0 3.45
## 77  1 10  1  0 2.93
## 78  1  7  1  1 2.69
## 79  1  9  1  0 2.24
## 80  0  0  0  0 2.95
## 81  1  3  1  0 3.03
## 82  1  5  1  1 3.73
## 83  1 13  0  0 2.75
## 84  1 20  0  1 2.87
## 85  0  0  0  0 3.35
## 86  1  4  0  0 2.88
## 87  1  7  1  1 2.99
## 88  1  1  1  1 3.03
## 89  1  2  1  1 3.14
## 90  1  7  0  0 3.00
## 91  1 12  1  0 2.98
## 92  1  1  1  1 2.93
## 93  1  2  0  0 3.67
## 94  1  3  1  1 4.48
## 95  1 12  1  0 2.88
## 96  1  2  1  0 2.89
## 97  1  4  1  1 3.08
## 98  1  1  1  0 3.26
## 99  0  0  0  0 2.52
## 100 1  7  0  1 2.57

Analisis Regresi Logistik

modelreglog <- glm(y~X1+X2+X3+X4, family = binomial(link = logit), data = datagab)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ X1 + X2 + X3 + X4, family = binomial(link = logit), 
##     data = datagab)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -27.672   5527.734  -0.005    0.996
## X1             20.863   5527.725   0.004    0.997
## X2             22.875  20015.984   0.001    0.999
## X3             21.341  20017.177   0.001    0.999
## X4              2.401      3.180   0.755    0.450
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 45.3935  on 99  degrees of freedom
## Residual deviance:  6.1118  on 95  degrees of freedom
## AIC: 16.112
## 
## Number of Fisher Scoring iterations: 24