R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Membangkitkan Data

Skenario

Y : Keputusan menolak/menerima pelamar kerja pada PTA posisi B X1 : Lama pengalaman kerja sebelumnya (bulan) X2 : Status pekerjaan saat ini (0: Bekerja, 1: Tidak bekerja) X3 : Tingkat pendidikan (0: Lulusan Sekolah Menengah, 1: Lulusan Perguruan Tinggi) X4 : IPK (skala 4)

Membangkitkan data X1

X1 : Lama pengalaman kerja sebelumnya (bulan)

set.seed(123)
xcontoh <- rnorm(100,50,20)
xcontoh
##   [1] 38.790487 45.396450 81.174166 51.410168 52.585755 84.301300 59.218324
##   [8] 24.698775 36.262943 41.086761 74.481636 57.196277 58.015429 52.213654
##  [15] 38.883177 85.738263 59.957010 10.667657 64.027118 40.544172 28.643526
##  [22] 45.640502 29.479911 35.422175 37.499215 16.266134 66.755741 53.067462
##  [29] 27.237261 75.076298 58.529284 44.098570 67.902513 67.562670 66.431622
##  [36] 63.772805 61.078353 48.761766 43.880747 42.390580 36.105860 45.841654
##  [43] 24.692073 93.379119 74.159240 27.537828 41.942303 40.666893 65.599302
##  [50] 48.332619 55.066370 49.429065 49.142591 77.372046 45.484580 80.329412
##  [57] 19.024944 61.692275 52.477085 54.318831 57.592790 39.953531 43.335852
##  [64] 29.628492 28.564175 56.070573 58.964196 51.060085 68.445349 91.001694
##  [71] 40.179377  3.816622 70.114770 35.815985 36.239828 70.511427 44.304540
##  [78] 25.585646 53.626070 47.222173 50.115284 57.705608 42.586799 62.887531
##  [85] 45.590269 56.635639 71.936780 58.703630 43.481368 72.976152 69.870077
##  [92] 60.967939 54.774635 37.441878 77.213049 37.994808 93.746660 80.652213
##  [99] 45.285993 29.471582

Membangkitkan data X1

X1 : Lama pengalaman kerja sebelumnya (bulan) Membangkitkan variabel X1 dengan lama pekerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100

set.seed(100)
n <- 100
u <- runif(n)

x1 <- round(60*(-(log(1-u)/12)))
x1
##   [1]  2  1  4  0  3  3  8  2  4  1  5 11  2  3  7  6  1  2  2  6  4  6  4  7  3
##  [26]  1  7 11  4  2  3 13  2 15  6 11  1  5 23  1  2 10  8  9  5  3  8 11  1  2
##  [51]  2  1  1  2  4  1  1  1  5  1  3  5 16  6  3  2  3  3  1  6  3  2  4 17  5
##  [76]  5 10  7  9  0  3  5 13 20  0  4  7  1  2  7 12  1  2  3 12  2  4  1  0  7

Membangkitkan data X2

X2 : Status pekerjaan Keterangan yang digunakan (0=Tidak bekerja) dan (1=Bekerja)

set.seed(12345)
x2 <- round(runif(n))
x2
##   [1] 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1
##  [38] 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0
##  [75] 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0

Membangkitkan data x3

X3 : Tingkat pendidikan Keterangan yang digunakan (0=lulus SMA/Tidak kuliah) dan (1= lulus kuliah)

set.seed(123)
x3 <- round(runif(n))
x3
##   [1] 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1
##  [38] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0
##  [75] 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1

Membangkitkan data x4

X4 adalah data IPK dengan skala 4

set.seed(123)
x4 <- round(rnorm(n,3,0.5),2)
x4
##   [1] 2.72 2.88 3.78 3.04 3.06 3.86 3.23 2.37 2.66 2.78 3.61 3.18 3.20 3.06 2.72
##  [16] 3.89 3.25 2.02 3.35 2.76 2.47 2.89 2.49 2.64 2.69 2.16 3.42 3.08 2.43 3.63
##  [31] 3.21 2.85 3.45 3.44 3.41 3.34 3.28 2.97 2.85 2.81 2.65 2.90 2.37 4.08 3.60
##  [46] 2.44 2.80 2.77 3.39 2.96 3.13 2.99 2.98 3.68 2.89 3.76 2.23 3.29 3.06 3.11
##  [61] 3.19 2.75 2.83 2.49 2.46 3.15 3.22 3.03 3.46 4.03 2.75 1.85 3.50 2.65 2.66
##  [76] 3.51 2.86 2.39 3.09 2.93 3.00 3.19 2.81 3.32 2.89 3.17 3.55 3.22 2.84 3.57
##  [91] 3.50 3.27 3.12 2.69 3.68 2.70 4.09 3.77 2.88 2.49

Membangkitkan data Y

b0 <- -10
b1 <- 3.5
b2 <- 0.5
b3 <- 2.7
b4 <- 2.2
set.seed(1)
datapendukung <- b0+(b1*x1)+(b2*x2)+(b3*x3)+(b4*x4)
datapendukung
##   [1]  3.484  3.036 12.816 -0.112  9.932  8.992 27.806  5.414 13.052  0.116
##  [11] 18.142 35.496  7.240  9.932 20.484 22.258  0.650  1.444  4.370 20.272
##  [21] 12.134 20.058 12.678 23.508  9.618  0.952 25.224 38.476  9.346  4.986
##  [31] 10.762 44.470  7.290 53.268 18.502 35.848  3.916 14.534 77.270 -0.318
##  [41]  3.330 31.380 23.714 30.976 15.420  5.868 24.160 34.594  0.958  6.712
##  [51]  4.386  0.578  2.756  5.096 13.558  1.772 -1.094  3.438 16.932  0.342
##  [61] 10.718 13.550 52.726 16.978  9.112  3.930 10.784  9.866  4.312 20.366
##  [71]  9.750  4.270 14.400 55.330 13.352 15.722 31.792 22.958 28.798 -3.554
##  [81]  7.600 17.718 41.682 70.004 -3.642 10.974 25.510  3.784  6.448 22.354
##  [91] 40.200  3.894  3.864  9.618 40.596  3.440 16.198  2.294 -3.664 22.678
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 0.97022908 0.95417424 0.99999728 0.47202923 0.99995141 0.99987561
##   [7] 1.00000000 0.99556596 0.99999785 0.52896753 0.99999999 1.00000000
##  [13] 0.99928320 0.99995141 1.00000000 1.00000000 0.65701046 0.80907331
##  [19] 0.98750681 1.00000000 0.99999463 1.00000000 0.99999688 1.00000000
##  [25] 0.99993348 0.72151722 1.00000000 1.00000000 0.99991269 0.99321343
##  [31] 0.99997881 1.00000000 0.99931814 1.00000000 0.99999999 1.00000000
##  [37] 0.98046846 0.99999951 1.00000000 0.42116324 0.96544377 1.00000000
##  [43] 1.00000000 1.00000000 0.99999980 0.99717945 1.00000000 1.00000000
##  [49] 0.72272119 0.99878525 0.98770268 0.64060708 0.94025131 0.99391606
##  [55] 0.99999871 0.85470621 0.25086580 0.96887125 0.99999996 0.58467626
##  [61] 0.99997786 0.99999870 1.00000000 0.99999996 0.99988968 0.98073477
##  [67] 0.99997927 0.99994809 0.98677065 1.00000000 0.99994171 0.98621101
##  [73] 0.99999944 1.00000000 0.99999841 0.99999985 1.00000000 1.00000000
##  [79] 1.00000000 0.02781421 0.99949980 0.99999998 1.00000000 1.00000000
##  [85] 0.02553098 0.99998286 1.00000000 0.97777366 0.99841882 1.00000000
##  [91] 1.00000000 0.98004268 0.97944738 0.99993348 1.00000000 0.96893152
##  [97] 0.99999991 0.90837890 0.02498932 1.00000000
set.seed(2)
y <- rbinom(n,1,p)
y
##   [1] 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [75] 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
datagab <- data.frame(y,x1,x2,x3,x4)
datagab
##     y x1 x2 x3   x4
## 1   1  2  1  0 2.72
## 2   1  1  1  1 2.88
## 3   1  4  1  0 3.78
## 4   0  0  1  1 3.04
## 5   1  3  0  1 3.06
## 6   1  3  0  0 3.86
## 7   1  8  0  1 3.23
## 8   1  2  1  1 2.37
## 9   1  4  1  1 2.66
## 10  0  1  1  0 2.78
## 11  1  5  0  1 3.61
## 12  1 11  0  0 3.18
## 13  1  2  1  1 3.20
## 14  1  3  0  1 3.06
## 15  1  7  0  0 2.72
## 16  1  6  0  1 3.89
## 17  0  1  0  0 3.25
## 18  1  2  0  0 2.02
## 19  1  2  0  0 3.35
## 20  1  6  1  1 2.76
## 21  1  4  0  1 2.47
## 22  1  6  0  1 2.89
## 23  1  4  1  1 2.49
## 24  1  7  1  1 2.64
## 25  1  3  1  1 2.69
## 26  1  1  0  1 2.16
## 27  1  7  1  1 3.42
## 28  1 11  1  1 3.08
## 29  1  4  0  0 2.43
## 30  1  2  0  0 3.63
## 31  1  3  1  1 3.21
## 32  1 13  0  1 2.85
## 33  1  2  0  1 3.45
## 34  1 15  1  1 3.44
## 35  1  6  0  0 3.41
## 36  1 11  0  0 3.34
## 37  1  1  1  1 3.28
## 38  1  5  1  0 2.97
## 39  1 23  1  0 2.85
## 40  1  1  0  0 2.81
## 41  1  2  1  0 2.65
## 42  1 10  0  0 2.90
## 43  1  8  1  0 2.37
## 44  1  9  1  0 4.08
## 45  1  5  0  0 3.60
## 46  1  3  0  0 2.44
## 47  1  8  0  0 2.80
## 48  1 11  0  0 2.77
## 49  0  1  0  0 3.39
## 50  1  2  1  1 2.96
## 51  1  2  1  0 3.13
## 52  1  1  1  0 2.99
## 53  1  1  0  1 2.98
## 54  1  2  0  0 3.68
## 55  1  4  1  1 2.89
## 56  1  1  0  0 3.76
## 57  0  1  1  0 2.23
## 58  1  1  0  1 3.29
## 59  1  5  0  1 3.06
## 60  0  1  0  0 3.11
## 61  1  3  1  1 3.19
## 62  1  5  0  0 2.75
## 63  1 16  1  0 2.83
## 64  1  6  1  0 2.49
## 65  1  3  1  1 2.46
## 66  1  2  0  0 3.15
## 67  1  3  1  1 3.22
## 68  1  3  0  1 3.03
## 69  1  1  1  1 3.46
## 70  1  6  1  0 4.03
## 71  1  3  1  1 2.75
## 72  1  2  1  1 1.85
## 73  1  4  0  1 3.50
## 74  1 17  0  0 2.65
## 75  1  5  0  0 2.66
## 76  1  5  1  0 3.51
## 77  1 10  1  0 2.86
## 78  1  7  1  1 2.39
## 79  1  9  1  0 3.09
## 80  0  0  0  0 2.93
## 81  1  3  1  0 3.00
## 82  1  5  1  1 3.19
## 83  1 13  0  0 2.81
## 84  1 20  0  1 3.32
## 85  0  0  0  0 2.89
## 86  1  4  0  0 3.17
## 87  1  7  1  1 3.55
## 88  1  1  1  1 3.22
## 89  1  2  1  1 2.84
## 90  1  7  0  0 3.57
## 91  1 12  1  0 3.50
## 92  1  1  1  1 3.27
## 93  1  2  0  0 3.12
## 94  1  3  1  1 2.69
## 95  1 12  1  0 3.68
## 96  1  2  1  0 2.70
## 97  1  4  1  1 4.09
## 98  1  1  1  0 3.77
## 99  0  0  0  0 2.88
## 100 1  7  0  1 2.49

Analisis Regresi Logistik

modelreglog <- glm(y ~ x1 + x2 + x3 + x4, family = binomial(link="logit"),data = datagab)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -51.146  10396.253  -0.005    0.996
## x1             41.652  10396.249   0.004    0.997
## x2              1.426      1.828   0.780    0.435
## x3             22.379   6830.931   0.003    0.997
## x4              2.765      2.236   1.237    0.216
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 60.508  on 99  degrees of freedom
## Residual deviance: 10.052  on 95  degrees of freedom
## AIC: 20.052
## 
## Number of Fisher Scoring iterations: 25