membangkitkan Data

skenario

Y : keputusan menolak/menerika pelamar kerja pada pt A posisi B X1 : Lama pengalaman kerja sebelumnya (bulan) X2 : Status pekerjaan saat ini (0: Bekerja, 1: Tidak Bekerja) X3 : Tingkat pendidikan (0: Lulusan SMA, 1: Lulusan PT ) X4 : IPK (skala 4)

membangkitkan data X1

XI : Lama pengalaman kerja sebelumnya (bulan) Membangkitkan Variabel X1 dengan lama pengerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100

set.seed(100)
n <- 100
u <- runif(n)

X1 <- round(60*(-(log(1-u)/12)))
X1
##   [1]  2  1  4  0  3  3  8  2  4  1  5 11  2  3  7  6  1  2  2  6  4  6  4  7  3
##  [26]  1  7 11  4  2  3 13  2 15  6 11  1  5 23  1  2 10  8  9  5  3  8 11  1  2
##  [51]  2  1  1  2  4  1  1  1  5  1  3  5 16  6  3  2  3  3  1  6  3  2  4 17  5
##  [76]  5 10  7  9  0  3  5 13 20  0  4  7  1  2  7 12  1  2  3 12  2  4  1  0  7

membangkitkan data X2

X2 : Status pekerjaan keterangan yang digunakan (0 = Tidak bekerja) dan (1 = Beerja)

set.seed(100)
X2 <- round(runif(n))
X2 
##   [1] 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0
##  [38] 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1
##  [75] 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1

Membangkitkan data X3

X3 : Tingkat Pendidikan keterangan yang digunakan (0 = lulus SMA/Tidak kuliah ) dan (1 = lulus kuliah)

set.seed(100)
X3 <- round(runif(n))
X3
##   [1] 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0
##  [38] 1 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1
##  [75] 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1

Membangkitkan data X4

X4 adalah data IPK pelamar dengan skala 4

set.seed(100)
X4 <- round(rnorm(n, 3, 0.5),2)
X4
##   [1] 2.75 3.07 2.96 3.44 3.06 3.16 2.71 3.36 2.59 2.82 3.04 3.05 2.90 3.37 3.06
##  [16] 2.99 2.81 3.26 2.54 4.16 2.78 3.38 3.13 3.39 2.59 2.78 2.64 3.12 2.42 3.12
##  [31] 2.95 3.88 2.93 2.94 2.65 2.89 3.09 3.21 3.53 3.49 2.95 3.70 2.11 3.31 2.74
##  [46] 3.66 2.82 3.66 3.02 2.06 2.78 2.13 3.09 3.95 1.86 3.49 2.30 3.91 3.69 2.58
##  [61] 2.87 2.97 2.81 4.29 3.06 2.64 3.32 3.10 2.97 2.95 3.22 2.47 2.42 3.82 1.97
##  [76] 3.01 2.46 3.14 3.50 1.96 3.45 2.98 2.33 2.03 3.35 2.92 3.11 3.41 3.86 2.95
##  [91] 2.72 3.71 2.55 2.42 2.73 4.22 2.58 3.21 2.41 2.41

memebangkitkan data Y

###Menentukan Koef

b0 <- -10
b1 <- 3.5
b2 <- 0.5
b3 <- 1.7
b4 <- 1.2
set.seed(100)
datapendukung <- b0+(b1*X1)+(b2*X2)+(b3*X3)+(b4*X4)
datapendukung
##   [1]  0.300 -2.816  9.752 -5.872  4.172  4.292 23.452  1.032  9.308 -3.116
##  [11] 13.348 34.360  0.480  4.544 20.372 16.788 -3.128  0.912  0.048 18.192
##  [21]  9.536 17.256  9.956 20.768  3.608 -3.164 19.868 34.444  9.104  0.744
##  [31]  4.040 42.356  0.516 48.228 16.380 34.168 -2.792 13.552 76.936 -2.312
##  [41]  0.540 31.640 22.732 27.672 12.988  4.892 23.584 35.092 -2.876 -0.528
##  [51]  0.336 -3.944 -2.792  1.740  8.432 -2.312 -3.740 -1.808 14.128 -3.404
##  [61]  3.944 13.264 51.572 18.348  4.172  0.168  4.484  4.220 -2.936 16.740
##  [71]  4.364 -0.036  9.104 56.284 12.064 13.312 30.152 20.468 27.900 -7.648
##  [81]  4.640 13.276 40.496 64.636 -5.980  9.704 20.432 -2.408  1.632 20.240
##  [91] 37.464 -2.048  0.060  3.404 37.476  2.064  9.296 -2.648 -7.108 19.592
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 0.5744425168 0.0564656650 0.9999418252 0.0028093187 0.9848128209
##   [6] 0.9865070081 0.9999999999 0.7373034538 0.9999093125 0.0424520742
##  [11] 0.9999984040 1.0000000000 0.6177478748 0.9894810269 0.9999999986
##  [16] 0.9999999488 0.0419669449 0.7134092502 0.5119976965 0.9999999874
##  [21] 0.9999278001 0.9999999680 0.9999525601 0.9999999990 0.9736093406
##  [26] 0.0405431696 0.9999999976 1.0000000000 0.9998887923 0.6778699261
##  [31] 0.9827068434 1.0000000000 0.6262119578 1.0000000000 0.9999999230
##  [36] 1.0000000000 0.0577580149 0.9999986985 1.0000000000 0.0901339905
##  [41] 0.6318124177 1.0000000000 0.9999999999 1.0000000000 0.9999977124
##  [46] 0.9925495315 0.9999999999 1.0000000000 0.0533528010 0.3709834770
##  [51] 0.5832185491 0.0190024881 0.0577580149 0.8506870655 0.9997822619
##  [56] 0.0901339905 0.0232029381 0.1408800176 0.9999992684 0.0321706884
##  [61] 0.9809975119 0.9999982641 1.0000000000 0.9999999892 0.9848128209
##  [66] 0.5419014940 0.9888378304 0.9855142760 0.0504023772 0.9999999463
##  [71] 0.9874325742 0.4910009719 0.9998887923 1.0000000000 0.9999942367
##  [76] 0.9999983455 1.0000000000 0.9999999987 1.0000000000 0.0004767698
##  [81] 0.9904346813 0.9999982848 1.0000000000 1.0000000000 0.0025224475
##  [86] 0.9999389649 0.9999999987 0.0825646872 0.8364434345 0.9999999984
##  [91] 1.0000000000 0.1142546262 0.5149955016 0.9678293116 1.0000000000
##  [96] 0.8873546155 0.9999082178 0.0661123855 0.0008178610 0.9999999969
set.seed(5)
y <- rbinom(n, 1, p)
y
##   [1] 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 0
##  [38] 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1
##  [75] 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1
datagab <- data.frame(y, X1, X2, X3, X4)
datagab
##     y X1 X2 X3   X4
## 1   1  2  0  0 2.75
## 2   0  1  0  0 3.07
## 3   1  4  1  1 2.96
## 4   0  0  0  0 3.44
## 5   1  3  0  0 3.06
## 6   1  3  0  0 3.16
## 7   1  8  1  1 2.71
## 8   0  2  0  0 3.36
## 9   1  4  1  1 2.59
## 10  0  1  0  0 2.82
## 11  1  5  1  1 3.04
## 12  1 11  1  1 3.05
## 13  1  2  0  0 2.90
## 14  1  3  0  0 3.37
## 15  1  7  1  1 3.06
## 16  1  6  1  1 2.99
## 17  0  1  0  0 2.81
## 18  0  2  0  0 3.26
## 19  0  2  0  0 2.54
## 20  1  6  1  1 4.16
## 21  1  4  1  1 2.78
## 22  1  6  1  1 3.38
## 23  1  4  1  1 3.13
## 24  1  7  1  1 3.39
## 25  1  3  0  0 2.59
## 26  0  1  0  0 2.78
## 27  1  7  1  1 2.64
## 28  1 11  1  1 3.12
## 29  1  4  1  1 2.42
## 30  0  2  0  0 3.12
## 31  1  3  0  0 2.95
## 32  1 13  1  1 3.88
## 33  1  2  0  0 2.93
## 34  1 15  1  1 2.94
## 35  1  6  1  1 2.65
## 36  1 11  1  1 2.89
## 37  0  1  0  0 3.09
## 38  1  5  1  1 3.21
## 39  1 23  1  1 3.53
## 40  0  1  0  0 3.49
## 41  1  2  0  0 2.95
## 42  1 10  1  1 3.70
## 43  1  8  1  1 2.11
## 44  1  9  1  1 3.31
## 45  1  5  1  1 2.74
## 46  1  3  0  0 3.66
## 47  1  8  1  1 2.82
## 48  1 11  1  1 3.66
## 49  0  1  0  0 3.02
## 50  1  2  0  0 2.06
## 51  1  2  0  0 2.78
## 52  0  1  0  0 2.13
## 53  0  1  0  0 3.09
## 54  1  2  0  0 3.95
## 55  1  4  1  1 1.86
## 56  1  1  0  0 3.49
## 57  0  1  0  0 2.30
## 58  1  1  0  0 3.91
## 59  1  5  1  1 3.69
## 60  0  1  0  0 2.58
## 61  1  3  0  0 2.87
## 62  1  5  1  1 2.97
## 63  1 16  1  1 2.81
## 64  1  6  1  1 4.29
## 65  1  3  0  0 3.06
## 66  1  2  0  0 2.64
## 67  1  3  0  0 3.32
## 68  0  3  0  0 3.10
## 69  1  1  0  0 2.97
## 70  1  6  1  1 2.95
## 71  1  3  0  0 3.22
## 72  0  2  0  0 2.47
## 73  1  4  1  1 2.42
## 74  1 17  1  1 3.82
## 75  1  5  1  1 1.97
## 76  1  5  1  1 3.01
## 77  1 10  1  1 2.46
## 78  1  7  1  1 3.14
## 79  1  9  1  1 3.50
## 80  0  0  0  0 1.96
## 81  1  3  0  0 3.45
## 82  1  5  1  1 2.98
## 83  1 13  1  1 2.33
## 84  1 20  1  1 2.03
## 85  0  0  0  0 3.35
## 86  1  4  1  1 2.92
## 87  1  7  1  1 3.11
## 88  1  1  0  0 3.41
## 89  1  2  0  0 3.86
## 90  1  7  1  1 2.95
## 91  1 12  1  1 2.72
## 92  0  1  0  0 3.71
## 93  1  2  0  0 2.55
## 94  1  3  0  0 2.42
## 95  1 12  1  1 2.73
## 96  0  2  0  0 4.22
## 97  1  4  1  1 2.58
## 98  0  1  0  0 3.21
## 99  0  0  0  0 2.41
## 100 1  7  1  1 2.41

##Analisis Regresi Logistik

modelreglog <- glm(y~X1+X2+X3+X4, family = binomial(link = "logit"), data=datagab)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ X1 + X2 + X3 + X4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients: (1 not defined because of singularities)
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -4.4016     2.4569  -1.792 0.073204 .  
## X1             1.8754     0.5182   3.619 0.000296 ***
## X2            14.0704  1717.0298   0.008 0.993462    
## X3                 NA         NA      NA       NA    
## X4             0.4034     0.7312   0.552 0.581112    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 110.216  on 99  degrees of freedom
## Residual deviance:  46.849  on 96  degrees of freedom
## AIC: 54.849
## 
## Number of Fisher Scoring iterations: 19