Membangkitkan Data

Skenario

Y : Keputusan menolak/menerima pelamar Kerja pada PT A posisi B X1 : Lama Pengalaman Kerja sebelumnya (bulan) X2 : Status pekerjaan saat ini (0: Pekerja 1: Tidak Bekerja) X3 : Tingkat pendidikan (0: Lulus Sekolah Menengah, 1: Lulusan Perguruan Tinggi) X4 : IPK (Skala 4)

Membangkita Data X1

X1 : Lama Pengalaman Kerja sebelumnya (bulan) Membangkitkan Variabel XL dengan lama pekerjaan 0-60 bulan dengan nilai tengah 12 dan banyak pelamar adalah 100

set.seed(100)
n <- 100
u <- runif(n)

x1 <- round (60*(-(log(1-u)/12)))
x1
##   [1]  2  1  4  0  3  3  8  2  4  1  5 11  2  3  7  6  1  2  2  6  4  6  4  7  3
##  [26]  1  7 11  4  2  3 13  2 15  6 11  1  5 23  1  2 10  8  9  5  3  8 11  1  2
##  [51]  2  1  1  2  4  1  1  1  5  1  3  5 16  6  3  2  3  3  1  6  3  2  4 17  5
##  [76]  5 10  7  9  0  3  5 13 20  0  4  7  1  2  7 12  1  2  3 12  2  4  1  0  7

Membangkitkan Data X2

X2 : Status pekerjaan Keterangan yang digunakan (0=Tidak Bekerja) dan (1=Bekerja)

set.seed(24)
x2 <- round(runif(n))
x2
##   [1] 0 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1
##  [38] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1
##  [75] 1 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0

Membangkitkan data x3

X3 : Tingkat Pendidikan Keterangan yang digunakan (0: Lulus Sekolah Menengah, 1: Lulusan Perguruan Tinggi)

set.seed(124)
x3 <- round(runif(n))
x3
##   [1] 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0
##  [38] 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1
##  [75] 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1

Membangkitkan data X4

X4 adalah data ipk pelamar dengan skala 4

set.seed(436)
x4 <- round(rnorm(n,3,0.5),2)
x4
##   [1] 3.66 2.67 2.32 4.09 4.14 1.85 2.81 3.34 2.52 3.09 3.15 3.32 3.64 4.14 2.65
##  [16] 2.91 3.06 3.13 3.07 2.51 2.29 3.84 2.90 3.78 2.81 2.55 2.73 3.20 2.39 3.25
##  [31] 2.71 2.45 3.02 2.36 2.57 3.64 2.88 1.95 2.51 3.25 3.16 2.71 3.68 2.35 2.79
##  [46] 3.10 2.54 3.00 3.00 3.28 3.12 2.74 2.75 3.87 2.74 3.54 3.84 2.98 3.71 3.05
##  [61] 2.87 3.23 3.56 2.62 2.74 2.81 2.11 3.68 3.64 3.61 3.03 2.46 3.08 2.91 2.37
##  [76] 3.03 3.02 3.49 2.62 2.03 3.01 3.27 3.25 2.89 2.02 3.46 2.92 2.86 4.08 2.43
##  [91] 2.81 2.23 2.34 2.78 3.51 2.03 2.54 2.87 2.90 2.91

##Membangkitkan data Y

Menentukan koef

b0 <- -11
b1 <- 3.5
b2 <- 0.5
b3 <- 2.7
b4 <- 3.2
set.seed(1)
datapendukung <- b0+(b1*x1)+(b2*x2)+(b3*x3)+(b4*x4)
datapendukung
##   [1]  7.712  1.044 13.624  2.588 13.248  5.920 28.692  7.188 14.264  2.388
##  [11] 19.780 40.824 10.848 15.948 21.980 19.812  4.992  8.716  9.024 18.032
##  [21] 13.028 25.488 12.780 25.596  8.492  1.160 24.936 38.240 13.848  6.400
##  [31] 10.872 42.340  5.664 51.752 18.724 41.848  2.216 15.940 78.032  3.400
##  [41]  6.112 35.372 31.476 28.020 15.428  9.420 27.828 37.100  2.100  6.496
##  [51]  5.984  4.468  4.000  8.884 12.268  4.328  4.788  4.736 18.372  4.960
##  [61]  8.684 16.836 56.392 18.384 11.468  4.992  6.752 14.476  4.648 21.552
##  [71] 11.896  6.572 15.556 61.012 17.284 16.196 34.164 27.868 28.884 -4.004
##  [81]  9.632 16.964 48.100 70.948 -1.836 16.772 25.544  2.152  9.056 21.776
##  [91] 39.992  0.136  3.988  8.396 42.232  2.996 11.628  1.684  0.980 25.512
p <- exp(datapendukung)/(1+exp(datapendukung))
p
##   [1] 0.9995528 0.7396211 0.9999988 0.9300853 0.9999982 0.9973220 1.0000000
##   [8] 0.9992450 0.9999994 0.9159077 1.0000000 1.0000000 0.9999806 0.9999999
##  [15] 1.0000000 1.0000000 0.9932538 0.9998361 0.9998795 1.0000000 0.9999978
##  [22] 1.0000000 0.9999972 1.0000000 0.9997949 0.7613327 1.0000000 1.0000000
##  [29] 0.9999990 0.9983412 0.9999810 1.0000000 0.9965434 1.0000000 1.0000000
##  [36] 1.0000000 0.9016771 0.9999999 1.0000000 0.9677045 0.9977888 1.0000000
##  [43] 1.0000000 1.0000000 0.9999998 0.9999189 1.0000000 1.0000000 0.8909032
##  [50] 0.9984928 0.9974876 0.9886598 0.9820138 0.9998614 0.9999953 0.9869779
##  [57] 0.9917397 0.9913026 1.0000000 0.9930359 0.9998308 1.0000000 1.0000000
##  [64] 1.0000000 0.9999895 0.9932538 0.9988328 0.9999995 0.9905102 1.0000000
##  [71] 0.9999932 0.9986030 0.9999998 1.0000000 1.0000000 0.9999999 1.0000000
##  [78] 1.0000000 1.0000000 0.0179157 0.9999344 1.0000000 1.0000000 1.0000000
##  [85] 0.1375251 0.9999999 1.0000000 0.8958555 0.9998833 1.0000000 1.0000000
##  [92] 0.5339477 0.9818006 0.9997743 1.0000000 0.9523931 0.9999911 0.8434335
##  [99] 0.7271082 1.0000000
set.seed(2)
y <- rbinom(n,1,p)
y
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [75] 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
datagab <- data.frame(y,x1,x2,x3,x4)
datagab
##     y x1 x2 x3   x4
## 1   1  2  0  0 3.66
## 2   1  1  0  0 2.67
## 3   1  4  1  1 2.32
## 4   1  0  1  0 4.09
## 5   1  3  1  0 4.14
## 6   1  3  1  0 1.85
## 7   1  8  0  1 2.81
## 8   1  2  1  0 3.34
## 9   1  4  1  1 2.52
## 10  1  1  0  0 3.09
## 11  1  5  1  1 3.15
## 12  1 11  0  1 3.32
## 13  1  2  1  1 3.64
## 14  1  3  1  1 4.14
## 15  1  7  0  0 2.65
## 16  1  6  1  0 2.91
## 17  1  1  0  1 3.06
## 18  1  2  0  1 3.13
## 19  1  2  1  1 3.07
## 20  1  6  0  0 2.51
## 21  1  4  0  1 2.29
## 22  1  6  1  1 3.84
## 23  1  4  1  0 2.90
## 24  1  7  0  0 3.78
## 25  1  3  0  0 2.81
## 26  1  1  1  0 2.55
## 27  1  7  0  1 2.73
## 28  1 11  1  0 3.20
## 29  1  4  1  1 2.39
## 30  1  2  0  0 3.25
## 31  1  3  0  1 2.71
## 32  1 13  0  0 2.45
## 33  1  2  0  0 3.02
## 34  1 15  0  1 2.36
## 35  1  6  1  0 2.57
## 36  1 11  0  1 3.64
## 37  1  1  1  0 2.88
## 38  1  5  1  1 1.95
## 39  1 23  1  0 2.51
## 40  1  1  1  0 3.25
## 41  1  2  0  0 3.16
## 42  1 10  0  1 2.71
## 43  1  8  0  1 3.68
## 44  1  9  0  0 2.35
## 45  1  5  0  0 2.79
## 46  1  3  0  0 3.10
## 47  1  8  0  1 2.54
## 48  1 11  0  0 3.00
## 49  1  1  0  0 3.00
## 50  1  2  0  0 3.28
## 51  1  2  0  0 3.12
## 52  1  1  1  1 2.74
## 53  1  1  0  1 2.75
## 54  1  2  1  0 3.87
## 55  1  4  1  0 2.74
## 56  1  1  1  0 3.54
## 57  1  1  0  0 3.84
## 58  1  1  0  1 2.98
## 59  1  5  0  0 3.71
## 60  1  1  0  1 3.05
## 61  1  3  0  0 2.87
## 62  1  5  0  0 3.23
## 63  1 16  0  0 3.56
## 64  1  6  0  0 2.62
## 65  1  3  1  1 2.74
## 66  1  2  0  0 2.81
## 67  1  3  1  0 2.11
## 68  1  3  1  1 3.68
## 69  1  1  1  0 3.64
## 70  1  6  0  0 3.61
## 71  1  3  0  1 3.03
## 72  1  2  0  1 2.46
## 73  1  4  0  1 3.08
## 74  1 17  1  1 2.91
## 75  1  5  1  1 2.37
## 76  1  5  0  0 3.03
## 77  1 10  1  0 3.02
## 78  1  7  1  1 3.49
## 79  1  9  0  0 2.62
## 80  0  0  1  0 2.03
## 81  1  3  1  0 3.01
## 82  1  5  0  0 3.27
## 83  1 13  1  1 3.25
## 84  1 20  0  1 2.89
## 85  0  0  0  1 2.02
## 86  1  4  0  1 3.46
## 87  1  7  0  1 2.92
## 88  1  1  1  0 2.86
## 89  1  2  0  0 4.08
## 90  1  7  1  0 2.43
## 91  1 12  0  0 2.81
## 92  0  1  1  0 2.23
## 93  1  2  1  0 2.34
## 94  1  3  0  0 2.78
## 95  1 12  0  0 3.51
## 96  1  2  1  0 2.03
## 97  1  4  1  0 2.54
## 98  1  1  0  0 2.87
## 99  0  0  0  1 2.90
## 100 1  7  0  1 2.91

Analisis Regresi Logistik

modelreglog <- glm(y~x1+x2+x3+x4, family = binomial(link = "logit"), data=datagab)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(modelreglog)
## 
## Call:
## glm(formula = y ~ x1 + x2 + x3 + x4, family = binomial(link = "logit"), 
##     data = datagab)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  -348.52   99574.21  -0.004    0.997
## x1             60.62   13275.69   0.005    0.996
## x2             10.28   46349.95   0.000    1.000
## x3            -11.97   46743.86   0.000    1.000
## x4            116.23   29443.15   0.004    0.997
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3.3589e+01  on 99  degrees of freedom
## Residual deviance: 5.1457e-08  on 95  degrees of freedom
## AIC: 10
## 
## Number of Fisher Scoring iterations: 25